

Data Analysis in Remote Sensing : Change Detection in LULC using Time Series and Deep Learning for Unveiling Insights with Modified SHAP

Presented By:

Data Analytics and Al

Application of Data Analytics in Remote Sensing

Evolution & Misconception of Al

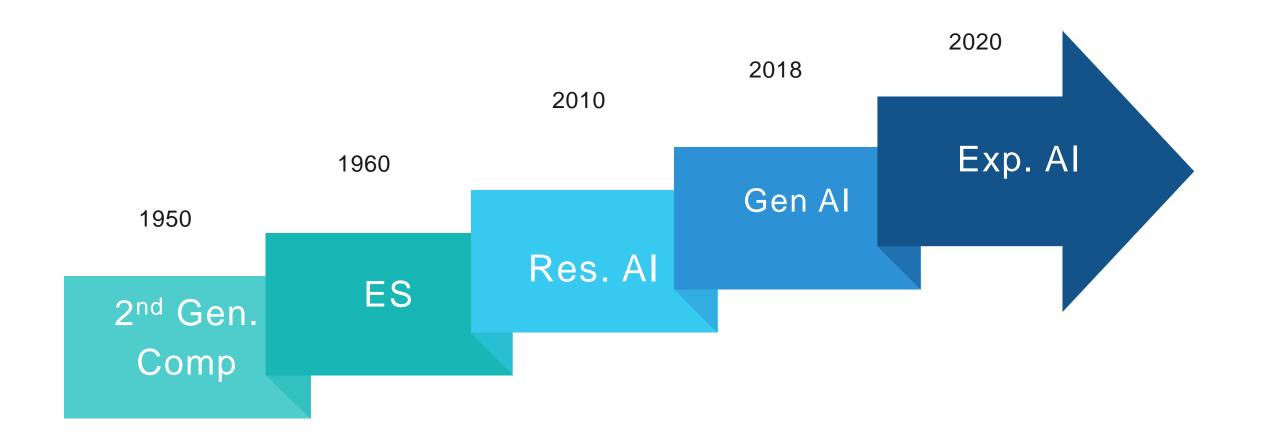
Roots of AI

Recent Development

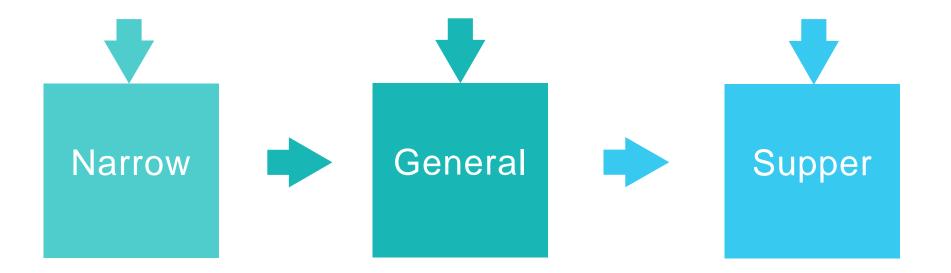
Applications in Remote Sensing

Case Studies - Change Detection

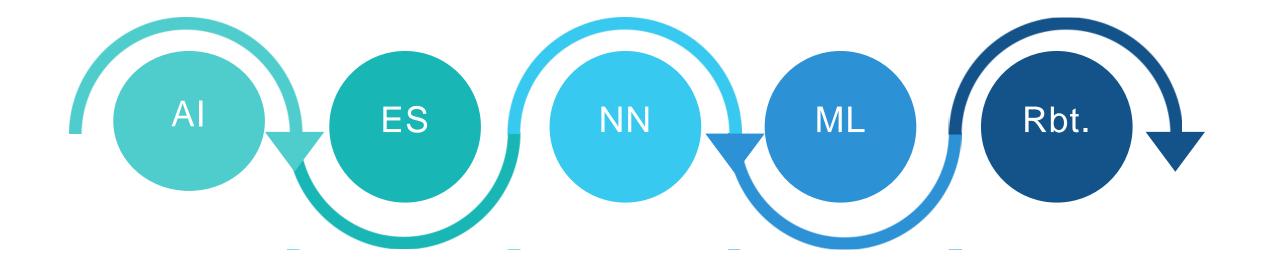
Evolution of AI



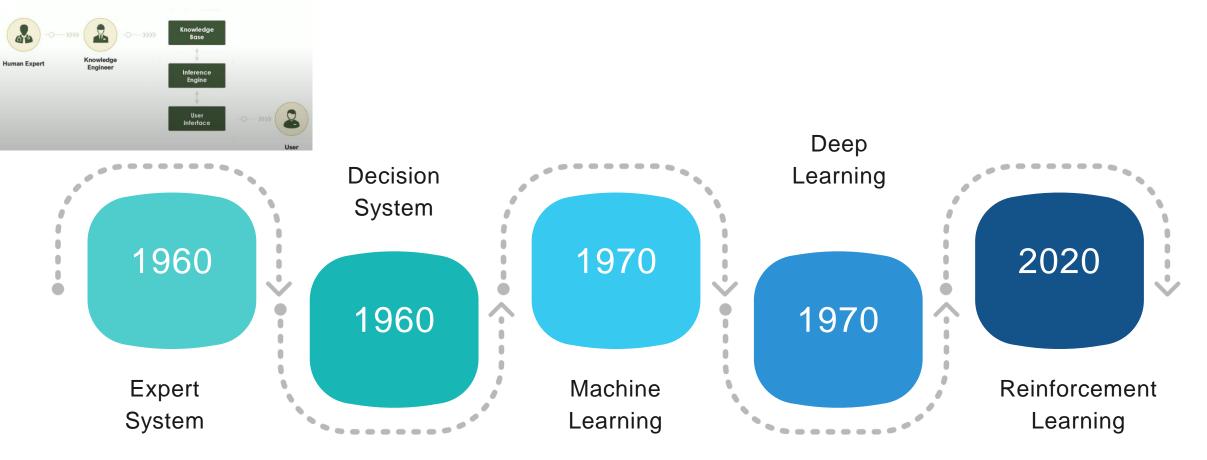
AI - Types



AI - Roots



Al – Branches



AI – ML – DL - DS

Artificial Intelligence

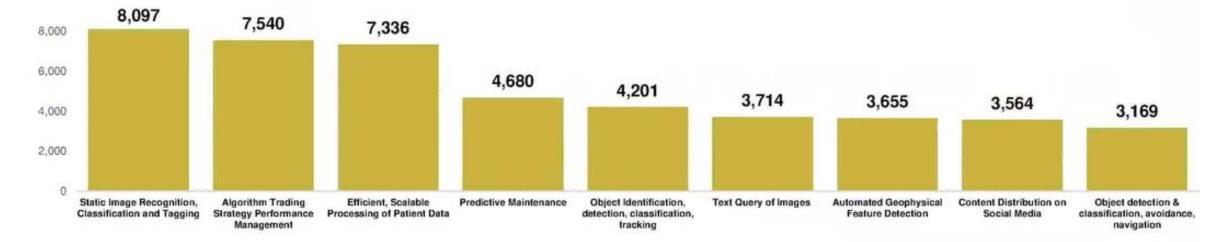
Engineering of making intelligent machines and programs

Machine Learning

Ability to learn without being explicitly programmed

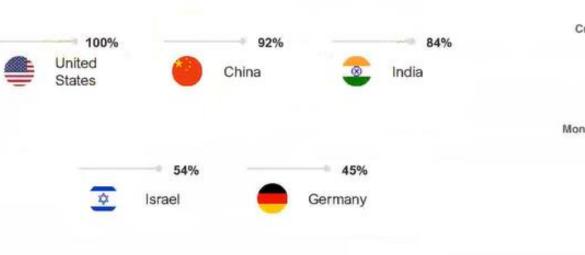
Deep Learning Learning based on deep neural network

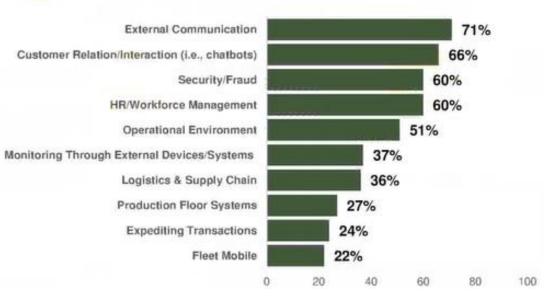
Global AI Revenue Forecast by 2025, Ranked by Use Case in millions US Dollar



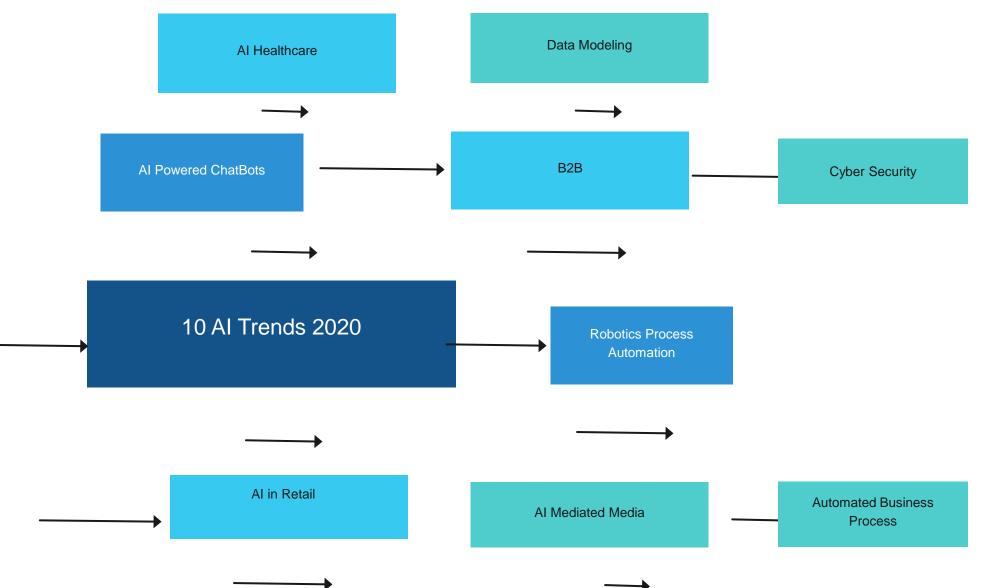
Penetration of Artificial Intelligence Skills, by Country

Organizations deploying AI, by Functional Areas





2020 Trend in Al

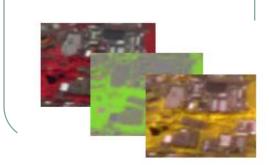


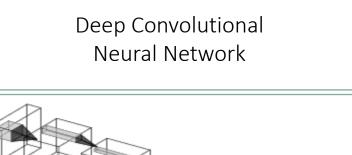
Case Study Objectives

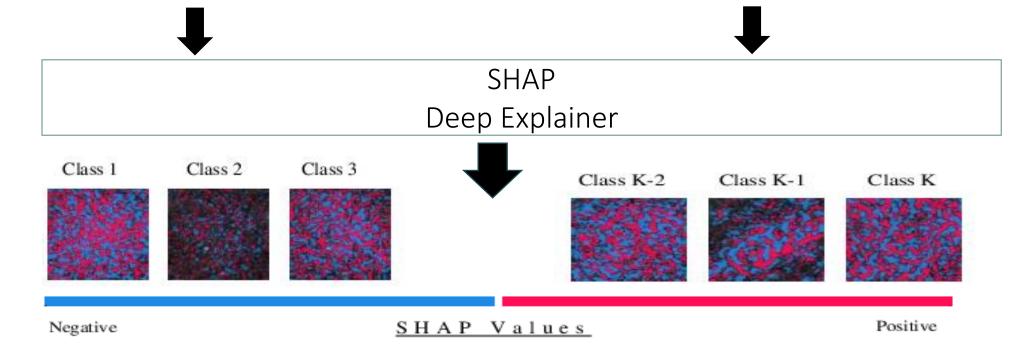
- To study change/development in a particular land area which is important to analyze the growth and problems in that area with *Time Series Analysis*
- To continuously inspect the change in land area images by implementing machine/Deep learning techniques with **ExpAI**

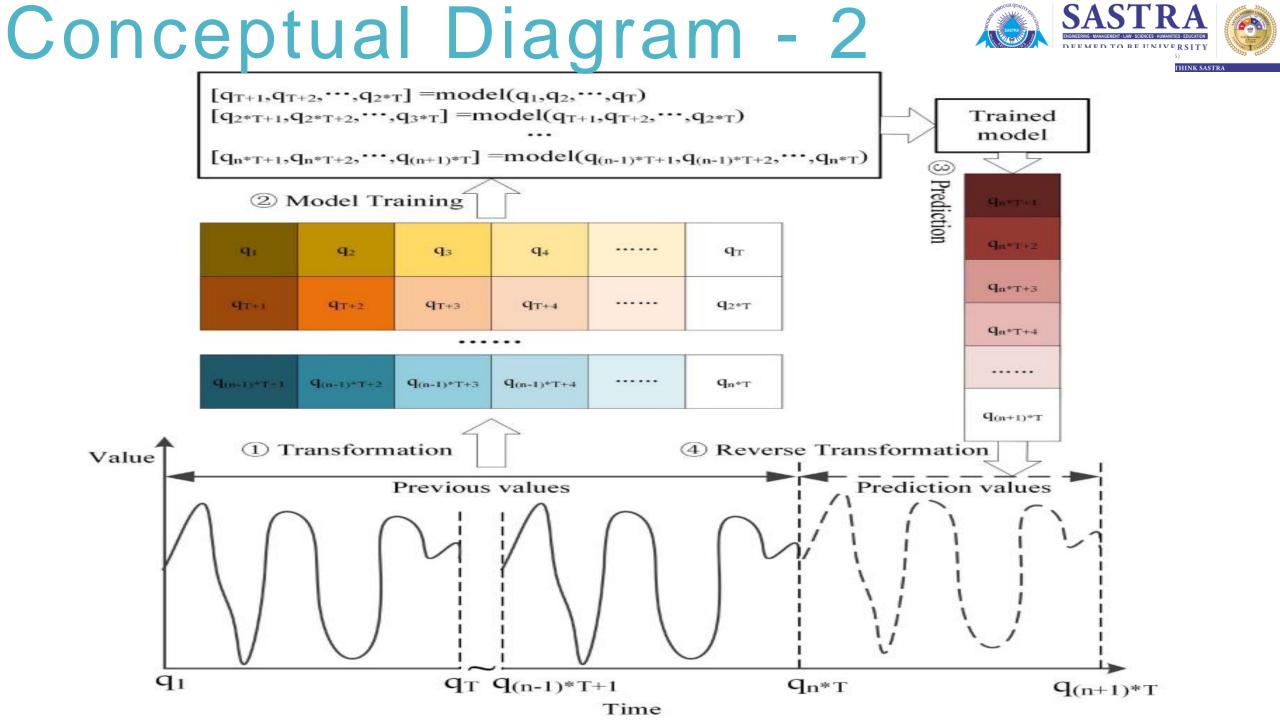
Conceptual Diagram - 1

Time Series and Multichannel images









Methodology

- Data Collection
- ➢ Preprocessing
- Model Architecture
- Shapley Additive Explanations (SHAPs) Integration
- ≻Training
- > Evaluation
- ► Results Analysis
- Performance Comparison

Techniques

INTERIOR AND A CONTRACT A CONTR

- Deep Learning Architectures
 - ResNet 50 and 101
 - VGG16
 - 4.Densenet121
 - InceptionV3
 - GeoNet
 - GoogleNet
 - Shallow CNN
 - SHAP
- Modified SHAP
- SARIMA Model
- STL-AR

Dataset

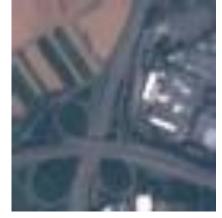
- Experimental data set is retrieved from sentinel-2 hub .which of location Hyderabad, Andhra Pradesh . and time line 01-01-2017 to 01-01-2024 with 12 points of time per year .Total 84images experimental data image resolution: 150 m with image size: (512,512)
 - <u>https://drive.google.com/drive/folders/1UKahSHn4TX23SC845W5D9RDArBkqdW4q?u</u> <u>sp=drive_link</u>
- The dataset covers cities are distributed over the 34 European countries and India
- Each image is 64x64 pixels with high spatial resolution (10 m to 60 m) over land and coastal waters.
- EuroSAT dataset is based on Sentinel-2 satellite images covering 13 spectral bands and consisting of 10 classes with 27000 labeled and geo-referenced samples.
 - <u>https://www.kaggle.com/datasets/apollo2506/eurosat-dataset</u>
 - <u>https://zenodo.org/records/7711810#.ZAm3k-zMKEA</u>

Class Labels

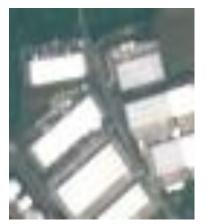
Annual Crop

Forest

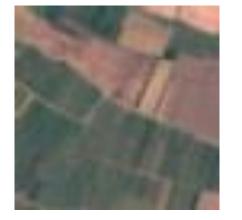
Herbaceous Vegetation

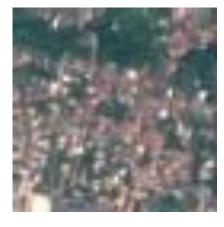


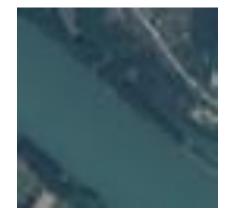
Highway



Industrial







Pasture

Permanent Crop

Residential

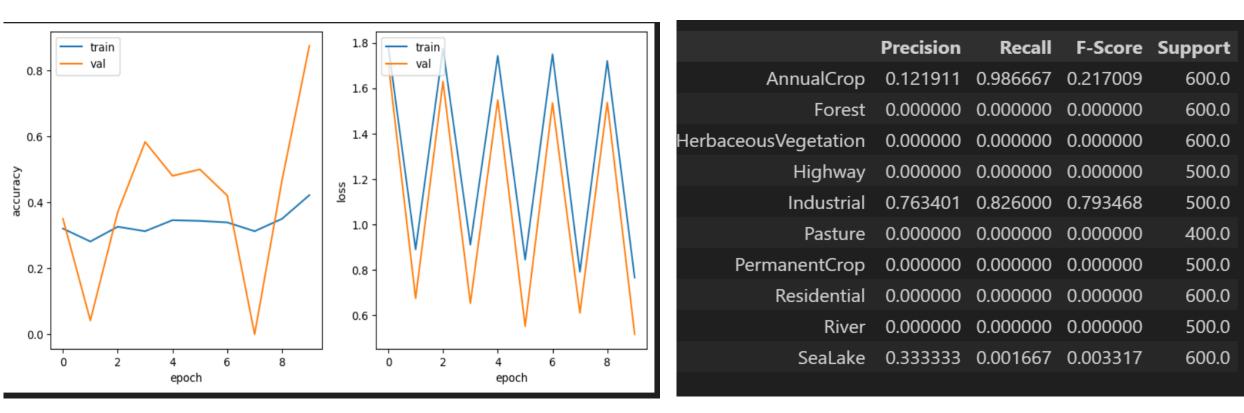
River

SeaLake

Existing Models:

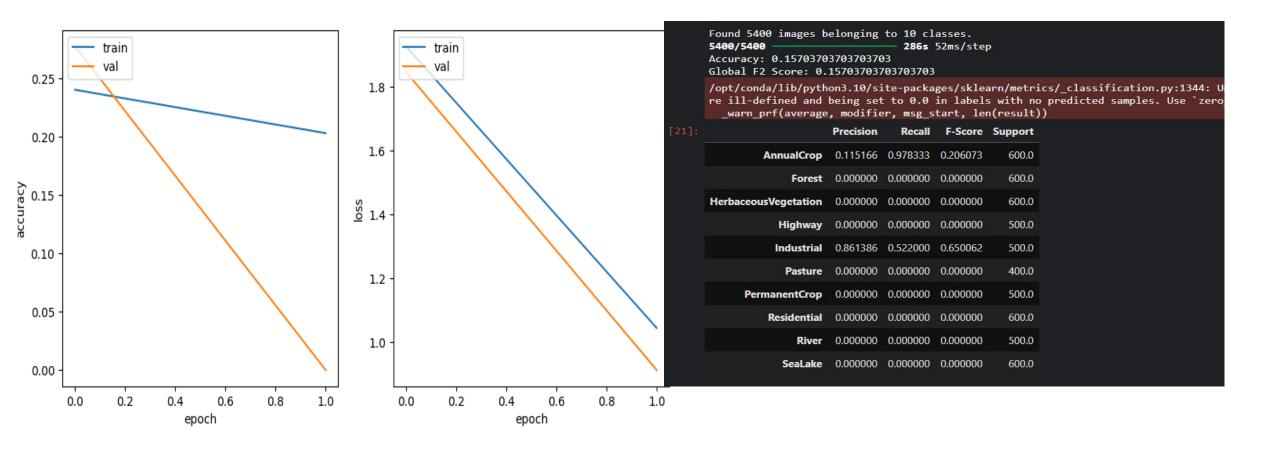
1 : **RESNET50** Model

ResNet-50 is a 50-layer convolutional neural network (48 convolutional layers, one MaxPool layer, and one average pool layer).



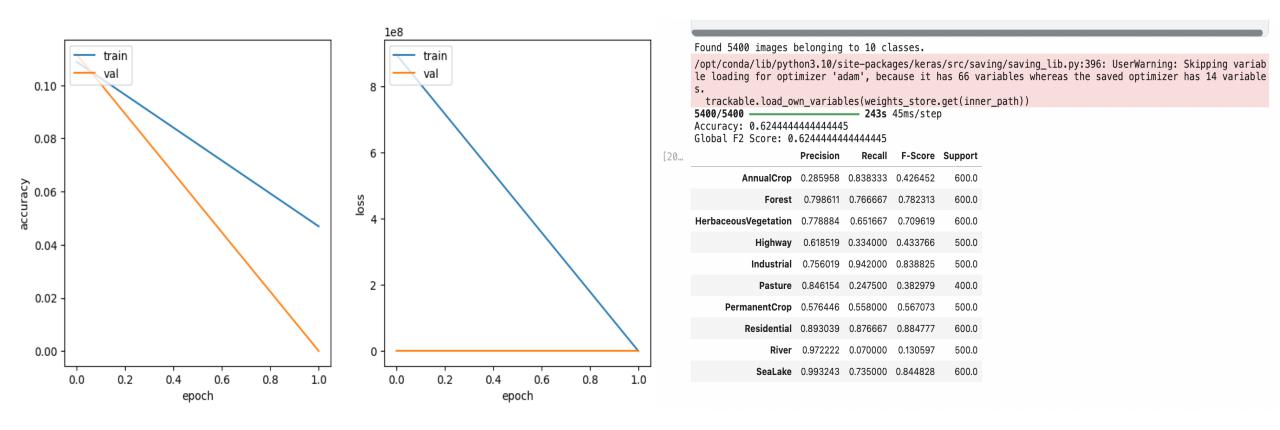
2.Resnet101 Model

ResNet-101 is a convolutional neural network that uses residual learning and skip connections to train deeper models.



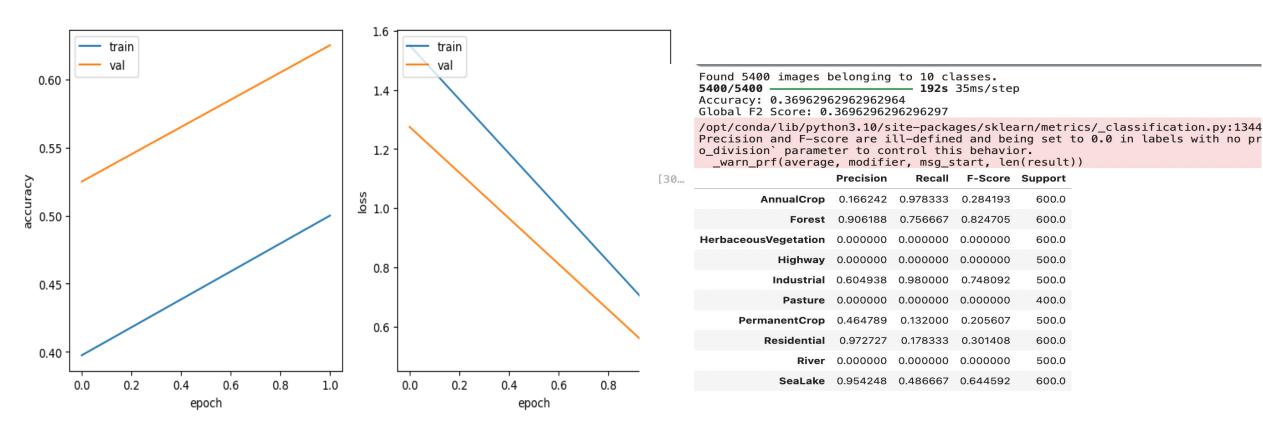
3. VGG16 model

- ➢ VGG16 refers to the VGG model, also called VGGNet.
- > It is a convolution neural network (CNN) model supporting 16 layers.



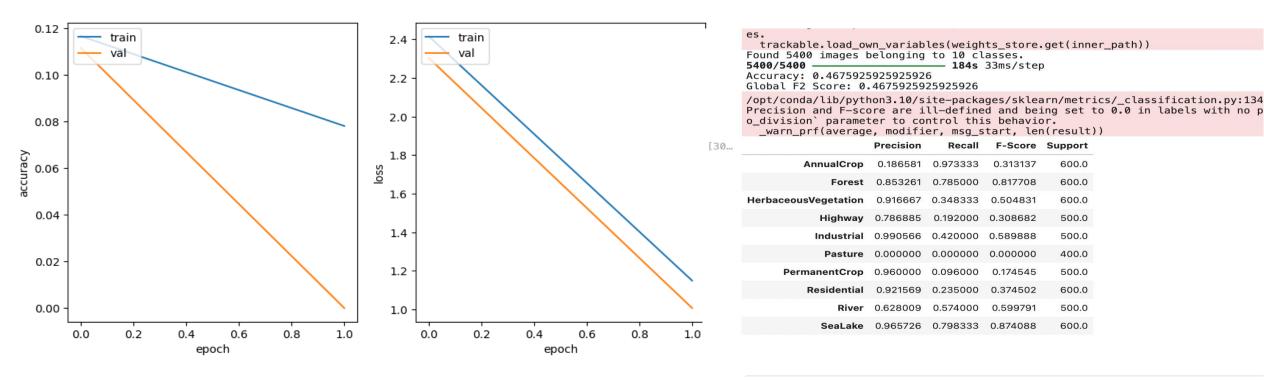
4. Densenet 121

DenseNet-121 is a model from Densely Connected Convolutional Networks (DenseNet). It's a variant of the convolutional neural network (CNN) architecture DenseNet

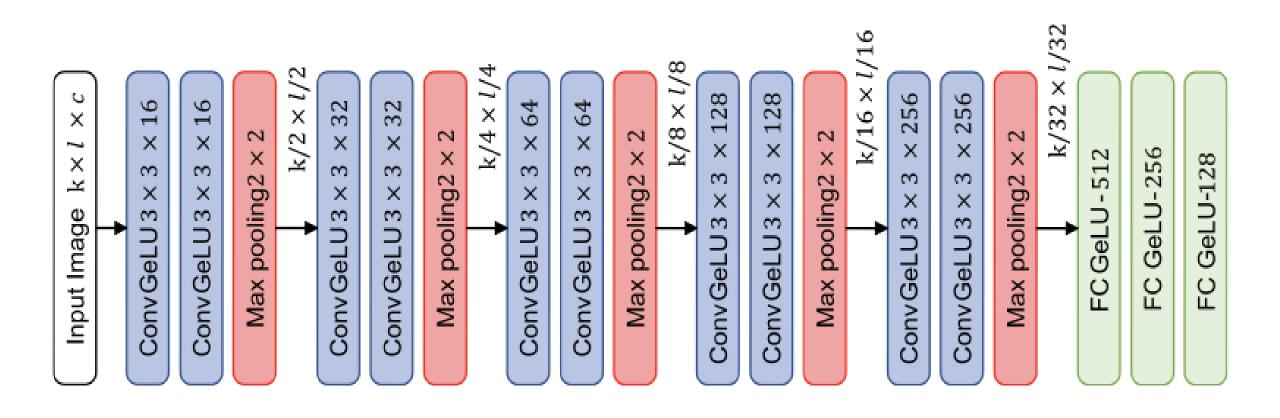


5.Inception V3

- Inception v3 is a convolutional neural network (CNN) model that helps with image analysis and object detection.
- It is a 48-layer model that uses symmetric and asymmetric building blocks, including pooling, convolutional, and auxiliary classifiers.



Proposed Model Architecture



Model Execution / Usage

Tirupati Region Our new testing dataset has 64 images belonging to different classes.

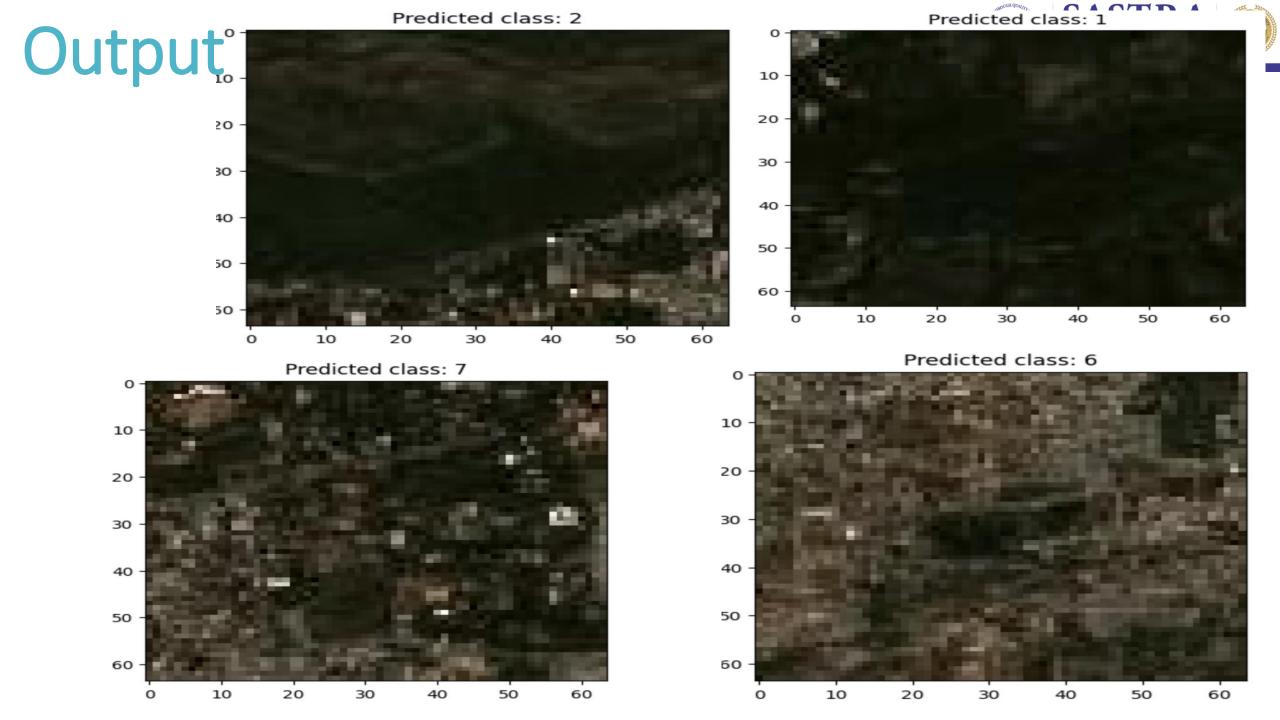
[8]:

print(train_generator.class_indices)

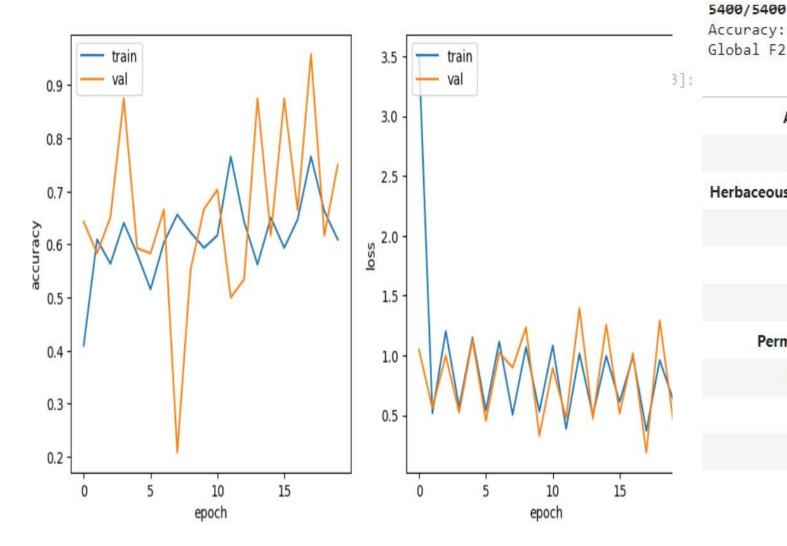
```
{'AnnualCrop': 0, 'Forest': 1, 'HerbaceousVegetation': 2, 'Highway': 3, 'Industrial': 4, 'Pasture': 5,
'PermanentCrop': 6, 'Residential': 7, 'River': 8, 'SeaLake': 9}
```

```
print(len(new_test_images))
print(predicted_classes)
```

2/2 5s 210ms/step
64
[2 1 6 1 2 2 2 7 2 7 2 2 1 1 6 1 1 2 1 1 2 7 2 1 2 1 7 2 1 2 2 7 6 1 1 6 1
6 2 6 1 2 2 2 1 2 2 2 6 1 1 6 2 2 7 1 7 1 2 6 1 2 6]



Proposed Model Results

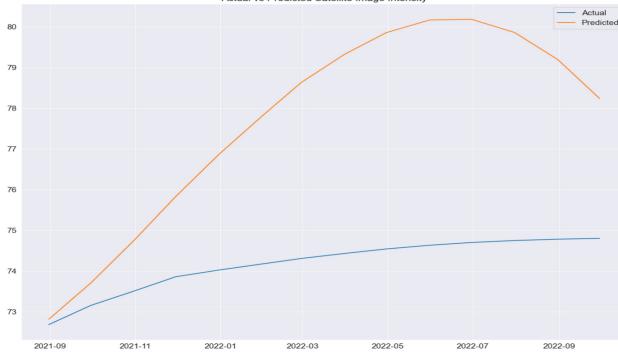




	Precision	Recall	F-Score	Support
AnnualCrop	0.265597	0.745000	0.391590	600.0
Forest	0.978049	0.668333	0.794059	600.0
lerbaceousVegetation	0.576596	0.451667	0.506542	600.0
Highway	0.800000	0.008000	0.015842	500.0
Industrial	0.763819	0.912000	0.831358	500.0
Pasture	0.660112	0.587500	0.621693	400.0
PermanentCrop	0.328358	0.088000	0.138801	500.0
Residential	0.552408	0.975000	0.705244	600.0
River	0.857143	0.132000	0.228769	500.0
SeaLake	0.911330	0.925000	0.918114	600.0

Model Comparison

					THINK M	AERIT THINK
	MODEL		ACCURACY(IMF	PLEMENTED)		
	ResNet50		56(n_epochs =	10)		
	ResNet101		15(n_epochs =	2)		
	DenseNet121		36(n_epochs =	2)		
	Inception V3		46(n_epochs =	2)		
	VGG16		62(n_epochs =2)			
	Proposed Model		56(n_epochs=1	LO)		
Methods Accuracy(i		Accuracy(im	lemented) Accuracy (in base		se paper))
SARIMA		RMSE:16.31 PCC:0.0197 Accuracy:82.08%		RMSE:0.0554 PCC:0.9967 Accuracy:80%		
		RMSE:3.92 PCC:0.954 Accuracy:95.29%		RMSE:0.0686 PCC:0.9536 Accuracy:80%		



With Minimal 2 Epochs

Mean Absolute Error: 13.286609504870144 Percentage Accuracy: 82.08802810705063 % PCC : 0.01979689276981323 RMSE : 16.313974001724983

Percentage Error Accuracy: 95.3165889281511 % Mean Absolute Error: 3.4876564699188464 Percentage Accuracy: 95.29775394556404 % PCC : 0.9547030908518155 RMSE : 3.923937563515211

Expected Results

- ➢ In conclusion , the project introduces Temporal Convolutional Networks (TCN) and Liquid Neural Networks (LNN) as effective tools for analyzing multi-spectral imagery, with LNN emerging as a less complex alternative requiring less labeled data.
- ➤ The project aims to compare these models, integrating TCN elements and LNN's for land area image segmentation.
- ➤ The study seeks to determine the model best suited for predicting land use and land class changes.
- Evaluation: Time dimension evaluation using RMSE (Root Men Square Error) and PCC (Pearson Correlation Coefficient) into account and one model will be considered to be better for the task

Result Analysis

- ➢ In Conclusion, the comparative analysis of various CNN models, encompassing a compact CNN specifically designed for land use and land cover classification.
- ➤ The study underscores not only the efficiency of the proposed framework but also its interpretability, particularly through the integration of Shapley Additive Explanations (SHAPs).
- ➤ This interpretability aspect is crucial for understanding the decision-making processes of the models, enhancing transparency in land use predictions. The findings emphasize the framework's applicability in resource-constrained environments.
- Deep Convolutional Neural Networks (CNNs) have proven instrumental in the accurate classification of remote sensing images, leveraging their capacity to automatically learn and extract hierarchical features.
- Various well-established architectures have been applied to address the unique challenges posed by remote sensing data.

References

- ➢ G. Kanagasundaram, K. Dissanayake, and C. Samarasuriya, "Remote sensing and GIS approach to monitor the land-use and land-cover change in kaduwela metropolitan area," in Proc. Moratuwa Eng. Res. Conf. (MERCon), Jul. 2022,pp1-6.
- D. Hong et al., "More diverse means better: Multimodal deep learning meets remote-sensing imagery classification," IEEE Trans. Geosci. Remote Sens., vol. 59, no. 5, pp. 4340–4354, May 2021.
- ➢ F. E. Fassnacht et al., "Importance of sample size data type and prediction method for remote sensing-based estimations of aboveground forest biomass", Remote Sens. Environ., vol. 154, pp. 102-114, 2014.
- Z. Hao, A. AghaKouchak, N. Nakhjiri and A. Farahmand, "Global integrated drought monitoring and prediction system", Scientific Data, vol. 1, 2014.

