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Land Use and Land Cover Analysis

2.1. Introduction

Economic development and population growth have triggered rapid changes to Earth’s land cover over the last two
centuries, and there is every indication that the pace of these changes will accelerate in the future. These rapid
changes are superposed on long-term dynamics associated with climate variability. Land cover change can affect
the ability of the land to sustain human activities through the provision of multiple ecosystem services and because
the resultant economic activities cause feedbacks affecting climate and other facets of global change. Accordingly,
systematic assessments of Earth’s land cover must be repeated, at a frequency that permits monitoring of both
long-term trends as well as interannual variability, and at a level of spatial detail to allow the study of human-
induced changes.

Land cover, defined as the assemblage of biotic and abiotic components on the Earth’s surface, is one of the most
crucial properties of the Earth system. There are three fundamental ways in which it is important (Turner  et al.,
1994). The first lies in the interaction of land cover with the atmosphere, which leads to regulation of the hydrologic
cycle and energy budget, and as such is needed both for weather and climate prediction (DeFries et al., 2002). For
example, most climate models are now coupled with Land Surface Parameterizations (LSPs) which use digital
land cover data to produce databases of albedo, surface roughness, evapotranspiration and respiration. Second,
land cover plays a major role in the carbon cycle acting as both sources and sinks of carbon. In particular, the
rates of deforestation, afforestation and regrowth play a significant role in the release and sequestering of carbon
and consequently affect atmospheric CO

2 
concentration and the strength of the greenhouse effect (IPCC, 2000;

Janetos and Justice, 2000; Houghton, 1999). Finally, land cover also reflects the availability of food, fuel, timber,
fiber, and shelter resources for human populations, and serves as a critical indicator of other ecosystem services
such as biodiversity. Information on land cover is fundamental to many national/global applications including
watershed management and agricultural productivity. Thus, the need to monitor land cover is derived from multiple
intersecting drivers, including the physical climate, ecosystem health, and societal needs.

Although the terms “land cover (LC)” and “land use (LU)” are sometimes used interchangeably, they are actually
different. Simply put, land cover is what covers the surface of the earth and land use describes how the land is
used. Examples of land cover classes include: water, snow, grassland, deciduous forest, and bare soil. Land use
examples include: wildlife management area, agricultural land, urban, recreation area etc. Two land parcels may
have similar land cover, but different land use. For instance, A golf course and an office building are both commercial
land uses. The former would have a land cover of grass, while the latter would be considered
built up.

2.2. LULC Mapping

2.2.1. Conventional Approach

Compilation from revenue records by the Directorate/Bureau of Economic and Statistics (DES/BES) of respective
states has been the conventional approach of collecting LULC information in the country. The land use information
“derived” from the agricultural inventory carried out at individual plot level is available in a nine-fold classification
system. These data are available in the form of statistical records without any reference to the spatial locations.
Topographical maps from Survey of India that represent very broad land use categories mapped using mainly
ground information on 1:50,000 to 1:25,000 scale is another source of LULC information. However, this land use
information does not represent current situation of land use and also does not reflect changes. Land use maps
generated by Soil Survey organizations that are based on soil mapping units forms another source, from which
land use information can be deciphered. However, such maps are generated and available for only specific project
areas. For most part, they have worked independently and without coordination with other agencies. Too often this
has meant duplication of effort, or it has been found that data collected for a specific purpose were of little or no
value for a similar purpose only a short time later.

There are many different sources of information on existing land use and land cover and on changes that are
occurring at different levels. Local planning agencies make use of detailed information generated during ground
surveys involving enumeration and observation. Major problems that surface during the application and interpretation
of these data sets include changes in definitions of categories and data collection methods by source agencies,
incomplete data coverage, varying data age, and employment of incompatible classification systems. In addition,
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it is nearly impossible to aggregate the available data because of the differing classification systems used. These
limitations of traditional approaches had been partly overcome by adopting modern approaches like remote sensing.

2.2.2. Remote Sensing based Approach

Land cover mapping is a product of the development of remote sensing, initially through aerial photography.
Remote sensing technology, because of the benefits it offers (wide area coverage, frequent revisits, multispectral,
multisource, and storage in digital format to facilitate subsequent updating and compatibility with GIS technology)
proved very practical and economical means for an accurate classification of land cover.

There are several important considerations that determine the characteristics of land cover information generated
using remote sensing data.

Purpose: Land cover information is obtained for numerous scientific, policy, planning or management purposes.
Within each of these areas, a wide range of needs exists. For example, land use inventories, forest inventories,
planning as well as other biophysical resource inventories require land cover information. Specific models of
vegetation–atmosphere interactions require different types of land cover information (Dickinson et al., 1986, Sellers
et al., 1994) including productivity models (Liu et al., 1997) and hydrological models (Wigmosta et al., 1994)

Thematic content: The information may be needed for few cover types (e.g., forest–non-forest); for all cover types
and at the same (or varying) levels of detail; tailored to specific model requirements; or as continuous variables
(e.g., percentage coniferous forest). The thematic content also has a strong effect on the frequency of land cover
mapping

Scale: Over large areas, land cover information may be required locally (at specific sites), at regional scales, or
continental to global scales

Data: The quality and availability of remote sensing data limit the type and accuracy of information that may be
extracted

Processing and analysis techniques: The characteristics of processing and analysis techniques employed at
various stages are of critical importance

2.2.3. LULC Classification System

There is no one ideal classification of land use and land cover, and it is unlikely that one could ever be developed.
There are different perspectives in the classification process, and the process itself tends to be subjective, even
when an objective numerical approach is used. There is, in fact, no logical reason to expect that one detailed
inventory should be adequate for more than a short time, since land use and land cover patterns change in
keeping with demands for natural resources. Each classification is made to suit the needs of the user.

In order to address the issues associated with classification like class definitions, multiple land uses on a single
land parcel, minimum representable area and to standardize the LULC information that could be generated
using remote sensing data. Anderson (1971) developed some criteria for classification systems.

• The minimum level of interpretation accuracy in the identification of land use and land cover categories from
remote sensor data should be at least 85 percent

• The accuracy of interpretation for the several categories should be about equal

• Repeatable or repetitive results should be obtainable from one interpreter to another and from one time of
sensing to another

• The classification system should be applicable over extensive areas

• The categorization should permit vegetation and other types of land cover to be used as surrogates for
activity

• The classification system should be suitable for use with remote sensor data obtained at different times of
the year

• Effective use of subcategories that can be obtained from ground surveys or from the use of larger scale or
enhanced remote sensor data should be possible

• Aggregation of categories must be possible
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• Comparison with future land use data should be possible

• Multiple uses of land should be recognized when possible

Accordingly, he proposed a multilevel land use and land cover classification system, wherein LULC information at
Levels I and II would generally be of interest to users who desire data on a nationwide, interstate, or statewide
basis. More detailed land use and land cover data such as those categorized at Levels III and IV usually will be
used more frequently by those who need and generate local information at the intrastate, regional or municipal
level. It was intended that these latter levels of categorization would be developed by the user groups themselves,
so that their specific needs might be satisfied by the categories they introduced into the structure. The system
satisfied the three major attributes of the classification process (1) it gave names to categories by simply using
accepted terminology; (2) it was amenable to further refinement on the basis of more extended and varied use
and (3) it allowed inductive generalizations to be made. At the more generalized levels it met the principal objective
of providing a land use and land cover classification system for use in land use planning and management activities.

Later on, many refinements and customizations were effected in the LULC classification systems, commensurating
with the needs of users and it is beyond the scope of this chapter to discuss the LULC classification systems
developed all over the globe.

2.3. Historical perspective of LULC mapping projects using remote sensing in India

The Indian experience on use of satellite data for LULC analysis is mentioned in the Manual on National land Use
Mapping at 1:250000 scale using IRS-P6 AWiFS data (NRSA, 2004), The work was carriedout by  National
Remote Sensing Centre (erstwhile NRSA). Department of Space, Government of India,  in collaboration with
various central and state government organisations. Realizing the need for an up-to-date nationwide LULC maps
by several departments in the country, as a prelude, a LULC classification system with 24 categories up to Level-
II, suitable for mapping on 1:250,000 scale, was developed by NRSC by taking into consideration the existing land
use classification adopted by NATMO, CAZRI, Ministry of Agriculture, Revenue Department, AIS & LUS, etc., and
the details obtainable from satellite imagery. After discussions with nearly 40 user departments / institutions in the
country a 22 fold classification system was finalized and adopted for Nationwide LULC Analysis.

2.3.1. Nationwide LULC Analysis for Agro-Climatic Zone Planning

The district-wise LULC analysis of all the 15 agro-climatic zones, using the 22 fold LULC classification system
was completed using satellite data for the period 1988 – 89. The IRS - LISS-I data of kharif (July-October) 1988 and
Rabi (November– March) 1989 were used to generate details on crop land in Kharif (July-October) and Rabi
seasons, the area under double crop, fallow lands, different types of forests, degradation status, wasteland, water
bodies, etc., using hybrid methodology i.e., visual as well as digital analysis approach.
NRSC along with Regional Remote Sensing  Centres (RRSC’s), State Remote Sensing Centres and other institutions
completed this task. Out of 442 districts in the country, 274 districts were analyzed using visual techniques and
remaining 168 districts by digital techniques. The Planning Commission of India was the main user for this project.

2.3.2. National Wastelands Inventory Project (NWIP)

Until recently, no attempt had been made to prepare map showing different types of wastelands in India.
The area reported by various government agencies under  wastelands varies from 38 M ha, to 175M. ha. In 1985,
NRSC prepared wasteland maps of all states and union territories at a 1:1 million scale. The total area of wastelands
in the country during 1980 – 1982 was estimated at 53.3 million ha or 16.2 per cent of the geographical area of the
country.

The National Wastelands Development Board (NWDB) was setup in 1985 with an objective of rehabilitating
5 million ha of land each year for fuel wood and fodder production through a massive programme of seeding
and afforestation. This programme required a very reliable database that provided details on the type, extent,
location and ownership of wastelands. In view of  varying estimates of the extent of wasteland, including the one
provided by  NRSC  based on remote sensing, the need for precise definitions of  various categories of wastelands
realized. The Technical Task Force established by the NWDB proposed a classification system consisting of
thirteen categories of wastelands.

Subsequently waste land mapping on 1 : 50,000 scale was taken up in five phases  and about 5000 wasteland
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maps covering entire country were prepared. The methodology developed based on pilot studies were used for
identification and delineation of different types of wastelands using  satellite data. Both Landsat Thematic Mapper
(TM) and an Indian satellite (LISS-II and LISS-III) data were used for mapping purposes. Hybrid methodology i.e.,
both visual and digital techniques were used to derive information on the wastelands. About 63,87 million ha (20.17
per cent) have been estimated as wastelands through this study. Second cycle wasteland analysis has been
completed using 2003 satellite data. An estimated   55.27 million ha. (17.45%)  of land area has been mapped as
wastelands. Currently, the 3rd cycle of mapping is in progress.

2.3.3. National Natural Resource Census

Land Use and Land Cover (IRS AWiFS data) : A composite Land Use/ Land Cover data set has been generated
using multi temporal IRS-AWiFs data. Analysis is being carried out on 1: 250, 000 scale using level I and some
Level II classes of land use classification. This project was aimed  to analyse  annual land use distribution for next
three years i.e., 2004-05, 2005-06 and 2006-07.

Land Use / Land Cover inventory using IRS P6 LISS III data: Under the national level Project, LULC mapping
on 1:50,000 scale for entire country has been taken up after conducting prototype studies for development of
legend,  standardization of methodology including digital data base creation and to generate spatial statistics.
These studies are being carried out using 2005-06 databases to create the bench mark database which can later
be used to understand the degree and magnitude of LULC changes at time intervals of 5 years.

2.4. Methodology of Land Use / Land Cover  Analysis

In principle, land cover mapping from satellite data is straightforward and consists of four steps: data acquisition,
pre-processing, analysis/classification, product generation and documentation.

2.4.1. Pre-processing

In principle, it entails geometric and radiometric corrections. Geometric corrections will not be discussed here as
it is beyond the scope of present topic. Details on radiometric corrections is presented in the subsequent paragraphs.

Coarse resolution data:

In the past, some classification projects employing coarse resolution data were carried out with single-date,
relatively cloud-free images. However, this approach is fundamentally limited because the probability of cloud-free
scenes decreases as the area covered by one scene increases. It is thus very difficult to obtain useful images for
land cover mapping, especially if the eligible time interval is short. Furthermore, such images contain systematic
errors due to atmospheric effects (as a function of the path length) as well as monotonically changing spatial
resolution for most coarse resolution sensors. Their classification is therefore difficult and requires interactive fine
tuning for each input scene used, as well as post-classification operations to reconcile differences between
adjacent scenes to ensure consistency across the mapped area. For these reasons, research in recent years has
emphasised the use of image composites.

In a compositing process, the image product is prepared so as to contain, as far as possible, information about the
land surface itself. Since a large fraction of the pixels typically contain clouds, the main objective of the procedure
is to select the most cloud-free measurement from those available for a given pixel of the composite image. At
present, the selection is most often based on the maximum value of the Normalized Difference Vegetation Index
(NDVI ) (Holben, 1986), Advantages of the NDVI criterion include high sensitivity to atmospheric contamination,
ease of computation and wide acceptance in previous studies, thus creating a de facto standard. The pixel
compositing approach yields nominally cloud-free composites every few days, thus providing a potentially large
data set for land cover classification. However, in this form the data are far from adequate for such a purpose. This
is because the composites have built-in noise from the varying satellite sensing geometry and from residual
clouds or variable atmospheric properties (water vapour, aerosols, ozone). These effects are normally present
between adjacent composite pixels and can lead to large radiometric differences for the same land cover type,
thus causing classification errors. They also have a strong impact on the consistency of satellite data, both within
and among years.

The degree of corrections following compositing varies among investigations. Atmospheric corrections are frequently
carried out, although nominal / climatological values of some critical parameters are typically used or their effect
is ignored (e.g., aerosol ). While the nominal corrections account for systematic effects such as Rayleigh scattering,
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they are incapable of discerning pixel-specific atmospheric contamination caused by translucent or small  clouds,
haze, or snow patches, Sellers et al., (1994) used the NDVI temporal trajectory to flag contaminated pixels and
Cihlar (1996) extended this approach in CECANT (Cloud Elimination from Composites using Albedo and NDVI
Trend). Since the detection is NDVI-based, it can identify the above sources of noise because they tend to
decrease the measured NDVI (compared to the ‘expected value’ for that pixel and compositing period). CECANT
requires that data for the entire growing season be available so that the NDVI curve can be modeled. However, it is
also applicable to new (current year) data provided that comparable full-season data are available for a previous
year and some degradation of performance can be traded for timeliness (Cihlar et al., 1999). Bidirectional corrections
are possible but have not yet been frequently implemented because of the perceived complexity of the problem.

Fine resolution data:

In the past, most land cover studies employing high resolution data were carried out with single images (hereafter
called ‘scenes’), parts of scenes or an assembly of such scenes from different areas. In these cases, radiometric
consistency was not an issue because the classification could be optimized individually for each scene. When
classifying a scene composite (i.e., a mosaic of scenes), the situation is more complicated. In principle, two
options are possible. First (case I), one can classify each scene separately and subsequently reconcile the
classes across the mosaic. Another approach (case II) is to assemble a mosaic of scenes for the entire area,
establish radiometric uniformity across the mosaic, and then classify it as one entity. In case I, each scene is
treated as a separate data set to be classified, using ancillary data that are appropriate for the classification
procedure employed. It is thus slow and labour-intensive. The reconciliation of classification across the boundaries
between adjacent scenes can be difficult and may require changes in the classification(s) or labelling to be carried
out within individual scenes. Even with these measures, discontinuities between scenes are not necessarily
removed if significant radiometric differences were present at the outset. Thus, even with much intervention by the
analyst, post-classification reconciliation does not guarantee success. On the other hand, case I is highly flexible
and can cope with various limitations of the input data.

Because of the infrequent satellite revisits, the compositing of fine resolution data over large areas (case II)
employs entire scenes, as opposed to individual pixels in the coarse resolution data. Thus, although radiometric
noise is still present, it takes on different forms. First, atmospheric contamination is less limiting because only
mostly cloud- and haze-free scenes (preferably <10%) are used for this purpose. Second, bidirectional problems
are much less severe, particularly in the case of nadir-looking sensors with a narrow field of view such as the
Landsat Thematic Mapper (TM) or Satellite Probatoire d’Observation de la Terre High Resolution Visible Imaging
System (SPOT HRV) in nadir mode.

A substantial amount of research has been carried out in the area of radiometric equalization across scene
composites. Typically, the algorithms utilize overlaps between adjacent scenes to establish the correction factors.
These corrections have been carried out interactively  or they can be automated (Chavez ,1988, Schott et al.,
1988, Elvidge et al., 1995,  Atzberger,1996, Yuan and Elvidge, 1996, Guindon, 1995). However, reconciling adjacent
scenes may not be sufficient in larger scene composites. An overall adjustment within the scene composite is
preferable, in which the inconsistencies and radiometric differences are balanced to an overall optimum. This is
conceptually similar to block adjustment employed in photogrammetry, and can be implemented for scene
compositing purposes. With such adjustments, the radiometric errors are minimized across the composite, based
on the magnitude of the differences detected in the overlapping areas. These differences can conveniently be
detected using overlaps with adjacent scenes or orbits. Because of the scale relationships between scene size
and the size of atmospheric high-pressure areas, adjacent scenes along the orbit often have similar cloud
contamination.

Even in radiometrically corrected scene composites, some noise will remain. The most important sources are
local atmospheric effects such as haze, smoke or cumulus clouds in an otherwise clear-sky scene. Small but
potentially significant bidirectional reflectance effects may also be present (Staenz et al., 1984), These residual
effects must be dealt with in the classification process.

In addition to purely radiometric noise, the uniformity is also affected by phenological differences among scenes
that are more difficult to address. Potential solutions include enlarging the window during which acceptable data
are acquired, usually by adding years from which data may be used; using data from other similar sensors; or
attempting a ‘phenological correction’ based on seasonal trajectories established for similar targets. Such corrections
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would be required prior to scene compositing. The use of scenes from various sensors in a composite has not yet
been explored. In principle, it requires pre-processing the data from the added sensor to resemble the initial one.
both spatially and spectrally. Spatial resolution presumes resampling to the same pixel size – a routine operation.
Spectral adjustment is conceptually more difficult, and its feasibility will depend on the differences between the
two sensors and the spectral characteristics of the targets in the imaged scene. The solution is easiest when the
added sensor has more than one spectral band where the initial sensor has only one. The inverse situation has no
satisfactory solution and may render the added data set unsuitable. It should be noted that the last two options
(phenological correction and compositing scenes from various sensors) will also add radiometric noise of their
own. Some form of between-scene reconciliation is therefore likely to be required in many cases. This and the
inevitable residual noise in the scene composite suggest that while the case II application may be the preferred
solution, in practice it may often have to be supplemented by case I to obtain quality land cover maps.

2.4.2. Classification

Land cover information that can be gleaned from satellite images is the spectral and spatial attributes of individual
cover types, There are some differences between coarse and fine resolution data, mainly in the relative importance
of these two kinds of attributes. Because of the reduced resolution, the spectral dimension is the most important
source of cover type information in coarse resolution images. For fine resolution data, the relative importance of
the spatial dimension is higher, although the spectral content still dominates in most cases. In the following
discussion, no distinction is therefore made between the two data types.

2.4.2.1. Digital Classification

Numerical techniques for satellite image classification have a long tradition, dating back to at least the early 70s,
two types of approaches have evolved and, in spite of recent developments, have remained as the basic options.
They differ in the assumptions made about the knowledge of the scene to be classified.
In supervised classification, a priori knowledge of all cover types to be mapped within the classified scene is
assumed. This knowledge is used to define signatures of the classes of interest, to be applied to the entire scene.
In unsupervised classification, no prior information about the land cover types or their distribution is required.
Unsupervised classification methods divide the scene into more or less pure spectral clusters, typically constrained
by pre-defined parameters characterizing the statistical properties of these clusters and the relationships among
adjacent clusters. The assignment of land cover labels to individual spectral clusters is made subsequently on the
basis of ground information, obtained in the locations indicated by the resulting clusters. In recent years, numerous
variants of these two basic classification methods have been developed. These include decision trees (Hansen et
al., 1996); neural networks  (Foody et al., 1997), fuzzy classification (Foody, 1998, Mannan et al., 1998) and
mixture modeling (van der Meer, 1995) for supervised classification; and classification by progressive
generalization(Cihlar et al.,1998e),classification through enhancement, and post- processing adjustments (Lark
1995 a, b) for unsupervised techniques.

It seems evident that when one knows what classes are desired and where they occur (at least as a sample),
supervised classification strategies are preferable. However, over large areas the distribution of classes is not
known a priori. This is compounded by the spatial trends in spectral signatures, resulting in the well known
signature extension problem. These complexities render sample selection very difficult and often arbitrary. Thus,
where spatial distribution information is not available, e.g., when mapping a large area previously not well known,
unsupervised classification is arguably the better strategy, although a supervised method has also been used in
such case (Hansen et al., 2000). Unsupervised classification provides more comprehensive information on the
spectral characteristics of the area, presents spectrally pure clusters for the labelling step, and gives the opportunity
to the analyst to group similar clusters into a smaller number of land cover classes. Perhaps the major problem
with unsupervised classification is the effect of controlled parameters (e.g., number of clusters, allowable dispersion
around a cluster mean), for the same data set, changes in these can produce different final clusters. A recent way
of circumventing this limitation has been to produce a large number of clusters, typically 100–400 (Homer et al.,
1997,  Cihlar et al., 1998e, Vogelmann et al., 1998). The large number of clusters is then reduced by well defined
merging steps. The merging procedure can be based on statistical measures (i.e., again unsupervised), or can be
carried out interactively by the analyst. Given the large number of clusters in relation to the small number of
resulting land cover types, the impact of control parameters on the final product is diminished in this case. Another



27

important limitation of unsupervised classification
is the potential mismatch between spectral
clusters and thematic classes. The
hyperclustering approach also mitigates this
problem, but additional steps may be necessary
(Lark, 1995b). Independent ground information
is required by both the supervised and
unsupervised method. The important advantage
of the latter is that concerns about the location
and representativeness of the ground data are
much reduced because the clusters are
homogenous by definition.

While most classification strategies have
focused on the use of the spectral dimension,
the spatial domain also contains important
information, especially in fine resolution data.
Although numerous algorithms have been
developed to quantify spatial relations within
images such as texture (Gong et al., 1992),
segment homogeneity (Kartikeyan et al.,1998)
and various others, the spatial dimension has
not been used effectively in image classification
so far. Spatial measures can be employed in
supervised or unsupervised classification as
additional channels, in unsupervised
classification for cluster merging, as a pre-
classifying step resulting in homogenous
patches (perfield classifiers), and in other ways.
Given the fact that spatial attributes can aid land
cover classification, their increased use is most
desirable. Recent interest in an effective use of spatial and spectral information (Shimabukuro et al., 1997,
Kartikeyan et al., 1998) is therefore encouraging.

An important consideration in land cover classification is consistency and reproducibility. That is, the same result
should be obtained by various analysts given the same input data or ideally, even different input data over the same
area. In practice, this means that as much as possible of the analysis should be done with objective, analyst-
independent procedures. On the other hand, the analyst cannot be entirely excluded from the process because
any classification is a human construct, imposing an artificial scheme on the natural world. One way of dealing
with this dichotomy is to separate the tasks into distinct phases. For example, Cihlar et al., (1998) described
‘classification by progressive generalization’, a non-iterative unsupervised classification procedure in which the
selection of training samples, classification and initial merging of clusters are automated and thus fully reproducible
(figure 2.1), In the last stage preceding labelling, the analyst is presented with suggestions for merging the
remaining clusters but the decision is his/hers. The suggested merging is based on both spectral and spatial
relations between the remaining cluster pairs. In this way, the number of clusters can be reduced to a few dozen
(typically 70–120) without the need for ground information.

Over large areas, applications of frequent mapping and at high spatial resolution are rare at the present time. High
resolution satellite data are routinely employed over large areas, e.g., for annual crop assessment (de Boissezon
et al., 1993), but in a sampling mode. The minimum required temporal frequency for land cover mapping at present
appears to be about 5 years (Ahern et al., 1998, GCOS, 1997), nevertheless, it is desirable to know about the
changes in land cover composition, though not the location of these changes for policy purposes, to satisfy
reporting requirements, to assess the impact of management measures, or for other reasons. Figure 2.2 illustrates
the Lan Use/Land Cover map generated through digitatal classification using multispectral satellite data.

Numerous studies have demonstrated the effectiveness of combining coarse and fine resolution images in estimating
the area of one class, e.g., forests (Mayaux and Lambin, 1995, 1997, DeFries et al., 1997, Mayaux et al., 1998),

Figure 2.1: Flowchart for Classificationby Progressive
Generalization (source: Cihlar  et al., 1998)
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When dealing with many classes, the methodological considerations are more complex (Walsh and Burk 1993,
Moody and Woodcock, 1996). Given a coarse resolution land cover map for an area (domain), it may be used to
stratify the domain into units with a similar composition, then sample these with high resolution data. The challenge
is in finding appropriate stratification and sampling framework that uses the domain coverage effectively.

2.4.2.2. Manual Classification

Manual, or visual, classification of remotely sensed data is an effective method of classifying land cover especially
when the analyst is familiar with the area being classified. This method uses skills that were originally developed
for interpreting aerial photographs. It relies on the interpreter to employ visual cues such as tone, texture, shape,
pattern, and relationship to other objects to identify the different land cover classes (figure 2.3), The primary
advantage of manual interpretation is its utilization of the brain to identify features in the image and relate them to
features on the ground. The brain can still beat the computer in accurately identifying image features. Another
advantage is that manual classification can be done without a computer, instead using a hardcopy version of a
satellite image.

The downside of manual interpretation is that it tends to be tedious and slow when compared with automated
classification and because it relies solely on a human interpreter it is more subjective. Another drawback is that it
is only able to incorporate 3 bands of data from a satellite image since the interpretation is usually done using a
color image comprised of red, green, and blue primary colours.

The technique used in manual interpretation is fairly simple. The analyst views the image on either a computer
screen or a hardcopy printout and then draws a polygon around areas that are identified as a particular land cover
type. If the land cover delineations are done on a computer screen the land cover map is created during the
delineation process. If the interpretation is done on a hardcopy image the resulting map will have to be digitized to
convert it into a machine readable format.

2.4.2.3. Hybrid Approach

A hybrid approach combines the advantages of the automated and manual methods to produce a land cover map
that is better than if just a single method was used. One hybrid approach is to use one of the automated classification
methods to do an initial classification and then use manual methods to refine the classification and correct

Figure 2.2: Land Use/ Land Cover Map of Haryana State generated through digital supervised classification
technique from IRS-WiFS image of February 2002
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obvious errors. With this approach a reasonably good classification can be obtained quickly with the automated
approach and then manual methods can be used to refine the classes that did not get labeled correctly.

The editing process requires that the analyst be able to compare the classified map with either the original satellite
image or some other imagery that can be used to identify land cover features. To compare a classified map with
imagery it is helpful to have access to software that allows the analyst to flicker between two images (the land
cover image and the original satellite image) or slide one image over the other on the computer display using a
technique often called “swiping”. By doing these comparisons the analyst gets a sense of the quality of the
classification. When errors are spotted they can be edited using tools common in many image processing software
packages. In most cases, visually editing a classified map will improve the accuracy of the final product.

2.4.3. Other methods of classification in vogue

A wide variety of methods exist to derive measures of vegetation cover from remotely sensed data. These methods
range widely in complexity, sophistication, and accuracy. The discrepancies are important for researchers to
consider when incorporating or generating vegetation data for larger studies. Since the accuracy disparity between
techniques is well documented, it should concern researchers who rely on simple linear vegetation indexes for
accurate vegetation cover estimates. It is important to determine precisely how different the vegetation measurements
will be between a simple, easy method, as compared to a more sophisticated, yet perhaps less accessible one.

Arguably the most widely used of these techniques is the Normalized Difference Vegetation Index (NDVI), It is a
simple operation, needing little time, expertise, or processing capacity, which uses two bands of data to generate
an index of relative vegetation abundance. Spectral Mixture Analysis (SMA) is a more sophisticated approach,
using all bands of data in an image to generate percent cover of various specified ground covers within each pixel.
Unfortunately field data was not available to assess the absolute accuracy of either of these techniques. However,
a good evaluation is possible based on data comparisons, detailed image interpretation, reviews of possible error
sources, and reviews of the wealth of literature on both these techniques.

2.4.3.1. Normalized Difference Vegetation Index

The dominant method for identifying vegetation using remotely sensed data is through vegetation indexes. Vegetation
indexes are algorithms aimed at simplifying data from multiple reflectance bands to a single value correlating to
physical vegetation parameters (such as biomass, productivity, leaf area index, or percent vegetation ground

Figure 2.3: Land use /Land Cover map of part of Karaikal, Pondichery generated using  manual classification
Heads-Up digitisation approach. The FCC pertains to IRS-P6 LISS-III data of February, 2006
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cover) (Tucker, 1979). These vegetation indexes are based on the well-documented unique spectral characteristics
of healthy green vegetation over the visible to infrared wavelengths.

Healthy green vegetation generally reflects very little solar energy in the visible wavelengths (0.4-0.7 µm), with a
sharp increase in reflectance in the near-infrared wavelength region (0.7-1.1 µm), This “red edge” is unique to
vegetation as a surface material. Dead or senescent vegetation and soil generally reflect relatively greater amounts
of energy in the visible wavelengths and less in the near-infrared. This unique spectral property of green vegetation
is used in various indexes ranging in complexity from applying correlation coefficients to brightness values of a
near-infrared band, to multi-band ratioing combined with complex algorithms. Arguably the most successful and
commonly used of these techniques is the Normalized Difference Vegetation Index (NDVI).

NDVI is the traditional vegetation index used by researchers for extracting vegetation abundance from remotely
sensed data (Tucker, 1979). It divides the difference between reflectance values in the visible red and near-infrared
wavelengths by the overall reflectance in those wavelengths to give an estimate of green vegetation abundance
(Tucker, 1979). In essence, the algorithm isolates the dramatic increase in reflectance over the visible red to near
infrared wavelengths, and normalizes it by dividing by the overall brightness of each pixel in those wavelengths.
Specifically NDVI is:

NDVI = IR-Red / IR+Red

where the values in either band have been converted from raw DN values to radiance of solar electromagnetic
radiation, The result of this algorithm is a single band data set, ranging from -1 to 1, with values corresponding to
photosynthetic vegetation abundance. NDVI has been used extensively to measure vegetation cover characteristics
on a broad-scale worldwide, and has been incorporated into many large-scale forest and crop assessment studies
(Peterson et al., 1987; Asrar et al., 1984), It is used to provide weekly vegetation maps, monitor crops over large
regions, monitor vegetation change in much of the tropics, and estimate biomass.

Despite this wide use, some well-documented accuracy limitations exist. The limitations of vegetation indexes
emanate from the fact that relationships between vegetation abundance and electromagnetic reflectance values
in complex vegetation structures (and areas with high vegetation abundance) are many times nonlinear, whereas
vegetation indexes are simple linear algorithms. Therefore, because of increased mutual shadowing in mature
stands, aging forests may show a decrease in NDVI while actual biomass increases. Consequently, once vegetation
indexes reach a threshold level they no longer accurately correlate to actual vegetation abundance  (Wiegand et
al., 1991),

Studies have also shown that background soil color affects NDVI, especially in heterogeneous scenes (Huete,
1988).  Because the difference between the bands is divided by the overall brightness of the two bands, extreme
variations in background soil brightness can cause NDVI values to be artificially high or low. In theory, pixels with
dark soil backgrounds, such as the basaltic soil patches, have a lower overall brightness. Therefore NDVI values
would be artificially higher in these areas, as the difference between the visible and near infrared would be divided
by less. Similarly, bright soil backgrounds would raise the overall brightness levels and therefore vegetation values
derived through NDVI would be artificially lower than areas with similar abundance that have dark soil backgrounds.
This background soil effect is additionally complicated by multiple scattering effects between vegetation and soil
(Huete, 1988).

While NDVI has been shown to correlate reasonably well in medium to low vegetation abundance with various
ecological parameters (such as leaf area index or green leaf biomass) (Anderson et al., 1993), the literature
suggests that in certain environments specific types of changes in vegetation may not be accurately depicted by
NDVI (Asrar, 1984; Peterson et al., 1987).

2.4.3.2. Spectral Mixture Analysis

Many other means of quantifying vegetation cover from remotely sensed data have been developed. One of the
most promising is Spectral Mixture Analysis (SMA), a more sophisticated technique that utilizes all available
bands of data to separate each pixel into fractions of specified land covers (Huete, 1986). The conceptual model
used to develop SMA is that most pixels in scenes are mixtures of a few specific ground covers (or endmembers),
especially in arid areas and mixed land use environments. If pure spectra of spectrally distinct primary land cover
materials (i.e., vegetation, water and soil) in a scene can be found, a data set can be converted to fractions of each
pre-defined land cover for each pixel (Adams et al., 1995; Huete, 1986).
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Linear mixture modeling assumes that endmembers (pre-defined primary land covers) are arranged in spatially
distinct areas in each pixel and can therefore be extracted through the application of specific algorithms. Each
pixel is modeled as a spatial mixture of endmember spectra to determine the physical abundance of land cover
types in each pixel area.

The results of SMA are the percent coverage of each defined ground cover material, or endmember, in each pixel.
This method had the advantage of deriving not only vegetation data, but land cover fractions for all the endmembers
used, as well. Additionally, the data is generated into a physically-based measure, and therefore easily integrated
into studies as measures of percent live cover rather than an indexed, relative measure. Elmore et al., 2000 found
percent live cover estimates using Spectral Mixture Modeling to be accurate within 4.0% and change in percent
live cover to have a precision of 3.8%, Specific examples of research using SMA include monitoring rural land use
changes and their effects on soil characteristics in Europe (Sommer et al., 1998), estimating erosion (Metternicht
& Fermont, 1998).

Despite the utility and accuracy of this method, limitations to SMA exist. In addition to being limited in the total
number of possible endmembers. SMA is limited by the type of endmembers that can be used, especially when
using multispectral data (Adams, et al., 1995; Roberts et al., 1993). Endmembers must be spectrally distinct from
one another and generally account for the dominant land cover and spectral characteristics of the scene. Therefore,
without hyperspectral data, it is virtually impossible to use this method to generate fractions of different types of
photosynthetic vegetation. Generally researchers are limited to vegetation, soil, sand, and shade when using
multispectral satellite imagery. Additionally, this process requires a good deal of processing capabilities and
expertise in order to find pure spectra of appropriate endmembers in the scene. However, it is important to emphasize
the advantage of additional datasets of endmember surface cover that are generated using SMA, as these can be
used to extract more information from scenes than vegetation index information alone.

2.5. Ground Data Collection

Although land cover maps are often made without visiting the field, there are good reasons why field visits should
be made. The two primary reasons for visiting the area that is being mapped are to collect data that can be used
to train the algorithm or the interpreter and to collect data that can be used to evaluate the land cover map and
estimate the accuracy of the individual classes (a process called validation). At a minimum, these data can be
collected in one trip but often two or more trips are preferred so that validation information can be systematically
collected using a sampling design based on the classification results.

Data collected in the field must be geo-referenced so that the point where the data were collected can be located
on the imagery. GPS receivers are commonly used to record this location information. The type of information
collected can range from detailed notes describing a site to a photograph of the site. Some of the detailed
information that can be recorded includes: type of vegetation, crown closure, slope, aspect, soil type, and other
bio-physical characteristics that are important to identify the land cover type. If photographs are taken it is a good
idea to record the direction the camera was pointed and to make notes about the area to supplement the content
in the photograph. For example, you could add information about species composition, tree height, and possibly
land use.

When land cover maps are created without using field data from the region of interest it is difficult to predict the
accuracy of the final land cover map. An analyst with significant experience may be able to produce a land cover
map of high quality but without validation information the true accuracy of the image classification quality is not
known.

2.6. Accuracy Assessment

No land cover classification project would be complete without an accuracy assessment. It may well be noted that
concern about the accuracy of land cover maps did not exist before the advent of satellite-based methods and
photo interpretation-based maps were assumed 100% accurate (this is still often the case, e.g., in forest inventories).
The need for accuracy assessment initially arose as part of algorithm development, and it was extended into an
important tool for users of land cover products. Many papers have been written on the methods of accuracy
assessment, and various accuracy measures have been defined (e.g., Hord and Brooner, 1976, Thomas and
Allcock ,1984, Rosenfield and Fitzpatrick-Lins,1986, Congalton, 1991, Hammond and Verbyla, 1996, Edwards et
al., 1998). At this point, the principles of accuracy assessment are well known. The ideal requirements are based
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on sampling theory, but practical considerations regarding access, resources, etc., constrain the ‘desirable’.
There are also methodological difficulties with respect to spatial resolution, mixed pixels in coarse resolution
satellite data being of special relevance. At the coarse resolution, many pixels contain a mixture of cover types
even in a fairly general classification scheme such as land versus water, thus creating a difficulty in deciding on
the correctness of the assigned label. An obvious approach is to assign the pixel to the single largest cover type
within the pixel (e.g., Cihlar et al., 1996, Hansen et al., 2000). This can be accomplished with the aid of fine
resolution maps where these are available. However, it is questionable when the dominant land cover type covers
much less than 50% of the pixel. Furthermore, since the high resolution maps have errors (as do maps obtained
through airborne techniques such as aerial photographs, airborne video, etc.), a definitive accuracy assessment
needs to contain ‘ground truth’ as part of the sampling design. In addition to purely methodological considerations,
accuracy assessment tends to be strongly constrained by the resources available. The acquisition of verification
data can be expensive, especially if a statistical design is rigorously followed, access is difficult etc. Within these
constraints, however, creative solutions are possible,

For example, Kalkhan et al., (1998) described the combined use of air photo interpretation and a sample of ground
data to assess the accuracy of Landsat-derive proportions of land cover types, with 200 samples at the first stage
and only 25 among these described in the field. To complicate matters further, ground truth may not necessarily
be correct either; its errors can be due to incorrectly specified location, very small land cover patches being used,
the inability of the surveyor to see a larger area of the surface, inconsistencies in labelling, etc. Thus, in practice,
accuracy assessment is likely to remain a matter of compromise between the ideal and the affordable, or ‘A
balance between what is statistically sound and what is practically attainable must be found (Congalton, 1996).

2.7. Land Use Land Cover  Mapping  -  Issues

Since land cover changes over time, the temporal resolution is a critical consideration in choosing the appropriate
data type. Figure 2.4 portrays the relationships between spatial resolution, temporal resolution and satellite data
sources. The dotted line identifies the principal domain of interest to large-area land cover mapping employing
satellite data. Such mapping is not required for very small areas or very frequently (i.e., the lower left part of the
graph). Thus, the domain of interest spans the range between two extremes: ‘coarse’ resolution at frequent time
intervals (lower right part of the plot), and ‘fine’ resolution at long intervals (upper left).
It should be noted that the labels ‘coarse’ and ‘fine’ are relative and that each covers a range of resolutions; for
example, ‘coarse’ is appropriate for AVHRR 8 km data but not for MODIS 250 m data. The terms are used for
brevity to categorize a sensor but the qualification must be kept firmly in mind.

The range between the above extremes is a continuum accessible through satellite remote sensing techniques.
Theoretically, the entire range could be covered using satellite data from the lower left corner of the range.
i.e., data obtained very frequently and at a high spatial resolution. However, this is a practical impossibility at the
present and a cost-ineffective solution at any time because land cover does not change rapidly enough in all
places. Thus, a more realistic approach is to consider the range as consisting of discrete components.

Region A in the figure represents mapping with frequently obtained coarse resolution data. With such data it is
possible to prepare higher level data sets through pixel compositing procedures (Holben, 1986), thus allowing
global land cover maps to be produced at short intervals. In region B, fine resolution data are obtained relatively
infrequently. Therefore, along with unavoidable cloud contamination and seasonal phenological effects, data sets
suitable for land cover analysis can be compiled only over longer time periods. A coverage of large areas is thus
produced through ‘scene compositing’, i.e., by mosaicking the individual images. Region C can utilize land cover
products generated by methods in A or B. So far, the approach has been to employ A for mapping and B for training
and/or validation (e.g., Cihlar and Beaubien, 1998, DeFries et al., 1998, Hansen et al., 2000). Region D presents
the greatest challenge, requiring frequent coverage at fine resolution. While this is not now realistically possible
over large areas, it should be feasible to synergistically combine data and products from parts A and B. So far,
satellite-based large-area mapping has been mostly performed in region A because of the availability of data and
the manageable computational demands. Land cover maps at 8 km resolution or coarser were prepared from
AVHRR Global Area Coverage (GAC) data (DeFries and Townshend 1994, DeFries et al., 1998). Maps for landscape
regions (e.g., Cihlar et al., 1997a,b, Steayert et al., 1997, Laporte et al., 1998) or larger areas (Loveland et al.,
1991, 1995, Cihlar and Beaubien, 1998) have been produced in recent years with 1 km AVHRR data. With the
availability of the global AVHRR 1 km data set , intensive activities led to global products at the same resolution
(Loveland and Belward, 1997, Hansen et al. 2000, Loveland et al., 2000). So far, region A maps have been
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produced infrequently. However, the same techniques can
be used to generate land cover maps at shorter time
intervals, as short as the minimum compositing period
resulting in a usable data set. For region B, the work so
far has been limited mostly to studies over small areas,
such as a Landsat scene or less. Among the exceptions
is the US GAP program (Jennings, 1995), through which
maps over entire states have been produced  (Homer et
al., 1997), humid tropical deforestation studies, and other
experimental products prepared through scene
compositing (Guindon 1995, Homer et al.,1997, Beaubien
et al., 1999, Vogelmann et al., 1998). Apart from some
methodological studies (e.g., Moody and Woodcock,
1996, Cihlar et al., 1998e), little work on region D has
been carried out.

2.8. Research needs and Opportunities

In general, research needs and opportunities are related
to present and upcoming information requirements over
large areas, and the expected evolution in the relevant
data and technological tools. In all these areas, land cover
mapping applications will receive a strong boost due to:

increased demand for information because of concerns about climate change and sustainable development; several
new sensors designed with land cover mapping as an important application; and the continuing rapid growth in
computing technology.

2.8.1. Pre-processing

Assuming that the range of land cover mapping requirements is represented by all four areas A–D, the focus needs
to be maintained on improving the methods for optimally using data from new coarse and fine resolution sensors.
For coarse resolution sensors, this means improved methods for image corrections, especially atmospheric,
sensing geometry and pixel contamination. The objective should be to produce a cloud-free composite image
which has radiometric properties of a single-date, fixed geometry image obtained during the same period. The
availability of high quality, calibrated data from MODIS, MERIS, VGT and GLI will make major improvements
possible. This goal cannot be fully achieved for most sensors because of the changing spatial resolution with the
viewing angle, although in some cases (e.g., SPOT VGT, Saint 1992) the resolution is view angle-independent.
Innovative ways must be found to define and implement robust, accurate and automated algorithms for the generation
of superior composite products. Newly available tools are calibrated data, improved spectral coverage (new as well
as sharpened bands), and the considerable progress made in recent years in defining algorithms for atmospheric
parameters extraction, bidirectional corrections, etc. Although the ultimate solution is an accurate detection of
contaminated pixels and retention of all remaining ones with the associated angular information, compositing will
be a necessary pre-processing step for land cover classification in the foreseeable future. Further work on compositing
algorithms thus appears warranted, with the currently ubiquitous maximum NDVI criterion used as the basis for
comparison. In the case of fine resolution sensors, the main pre-processing need is for accurate and robust scene
compositing. This implies accurate sensor calibration and atmospheric corrections, although these measures
alone are not sufficient. Local atmospheric effects (thin clouds, haze, smoke), subtle bidirectional effects, or small
phenological changes may yield to algorithmic solutions but they pose a significant challenge. Much more research
is needed on the preparation of large-area scene composites, to work out the theoretical and practical problems of
dealing with residual atmospheric, phenological and other types of noise. Research is also required on compositing
images from different sensors, with the objective of producing mosaics of the same consistency as from one
sensor. Once these techniques are developed sufficiently well to be automated, it should be possible to produce
‘virtual scene composites’, on the basis of which the user could routinely order data set(s) covering the geographic
area of interest over the specified compositing period(s). Of course, if any of the above radiometric differences
within the composite are not resolved at the pre-processing stage, they must be dealt with during classification.

Figure 2.4: Land Cover Mapping requirements
expressed in spatial and temporal resolutions.
The acronomy represents satellite sensors at both
fine and coarse resolutions; VHR – very high
resolution sensors (Source: Cihlar,2000)
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2.8.2. Classification

Cihlar et al.,(1998e) proposed that classification algorithms should ideally satisfy the following requirements:
accuracy; reproducibility by others given the same input data; robustness (not sensitive to small changes in the
input data); ability to fully exploit the information content of the data; applicability uniformly over the whole domain
of interest; and objectiveness (not dependent on the analyst’s decisions). Many present digital image classification
methods do not meet these criteria, and none meets them completely. Yet, such criteria are fundamental to a
scientifically based methodology. Some of the implications are briefly discussed below.
The interest and innovation in image classification methods has continued in recent years, as has the ‘creative
tension’ between supervised and unsupervised approaches and their variants. This will undoubtedly continue, and
it is a healthy and beneficial process which should lead to better algorithms. Work is needed especially in
mitigating the limitations of the two basic approaches, supervised and unsupervised, stemming from the fundamental
assumptions  (Chuvieco and Congalton, 1988, Bauer et al.,1994, Lillesand ,1996).

Although initially digital spectral values were the main input for classification, various types of data have been
considered more recently, either during classification (DeFries et al.,1995) or at the labelling stage (Brown et
al.,1993). This will be a continuing requirement, especially as the number of spectral bands increases and new
bands may prove to carry unique information content (e.g., Eva et al.,1998). There is a strong need to make better
use of spatial information. After all, useful land cover maps were produced from this attribute alone before the
advent of colour photography and digital classification. In addition to texture (which is easily computed but not
necessarily an informative attribute), more attention needs to be given to other measures such as pattern, shape
and context (Rabben 1960). Another problem is in optimally and synergistically combining spectral and spatial
elements, using one to improve the quantity and quality of land cover information obtained from the other.

A special challenge in image classification is to isolate, and minimize if possible, the role of the analyst in the
classification. This is important because reproducibility is a fundamental requirement for any method or product.
When the analyst’s input is distributed throughout the classification procedure, the result is not reproducible. On
the other hand, as long as discrete (thus artificial to some degree) classification legends continue to be used, the
analyst’s role cannot be eliminated because the class distinctions do not necessarily correspond to equivalent
distinctions in reality. However, it is possible to assign a more precise role to the analyst, and to limit his input to
specific portions of the classification procedure. This will improve the reproducibility of the entire process, and will
highlight the impact of the analyst’s decisions. A range of options are possible here. For example, in fuzzy
classification approaches, the analyst’s role can be reduced to defining the acceptable fractional composition of
each class in terms of individual components.

A further step in reducing the subjective component in classifications is to first prepare specific biophysical
products with continuous variables. For example, Running et al.,(1995) proposed that three variables (permanence
of above ground live biomass, leaf area index, leaf longevity) characterize vegetated land cover. If such separate
products can be derived from satellite data, individual users can construct an optimized classification legend for all
the land cover types or conditions present in the area to meet their specific objective. This does not eliminate need
for classifications but renders the whole process more useful because of a better fit of the classification with
specific user needs. The challenges here stem from the fact that ‘land cover’ can imply various characteristics, not
all easily translated into biophysical variables that can be derived from satellite data (e.g., the hydrological regime).
Nevertheless, this area needs to be pursued because of the potential gains in the utility of satellite-derived information
products. The work done so far on two or a few classes (e.g., Iverson et al.,1994, Zhu and Evans 1994, DeFries et
al.,1997) needs to be extended to multiple cover types.

Although for scene composites (Region B, figure 2.4) the desirable approach is classifying the entire mosaic as
one entity, it is very likely that data limitations will make this impossible in many cases. Local adjustments will
thus be needed to achieve optimum results. The locations of these should be evident based on input image quality,
but algorithms will be required to make this process reproducible and consistent.

Further research is needed on the synergistic use of data from coarse and fine resolution sensors to span the
entire range of requirements represented in figure 2.4. Region D is the most demanding, with high spatial and
temporal resolutions. It is also an area where large progress can be expected.

2.9. Land Use Land Cover Change

Changes in land use and land cover impact both environmental quality and the quality of life, two aspects that
impact human wellbeing. Changes in habitat, water and air quality and the quality of life are some of the environmental,
social and economic concerns associated with land use and land cover changes.
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Habitat: Land use by human leads to changes in land cover that can negatively impact biodiversity. Conversion of
natural wood- and grass-lands to more developed uses decreases the amount of habitat available. The pattern of
human land use also tends to result in a patchy landscape, fragmenting habitats. Some species of plants and
animals do better in patchy, fragmented environments, while others need large, uninterrupted areas.

Water Quality: Changes in land use can affect the volume, timing and quality of runoff water. More-developed land
uses have higher proportion of impervious surface (areas where water can not soak into the ground, such as
roadways, parking lots, and building roofs). As the amount of impervious surface increases, rainstorm runoff
increases in volume, increasing the risk of flooding and increasing the amount of pollutants carried into streams
and lakes. Human use of land also disturbs natural land cover, increasing the potential for soil erosion into streams
and lakes.

Quality of Life (aesthetics, recreation, congestion): Land use and land cover changes can affect quality of life
when those changes impact landscapes that have aesthetic value (scenic views), or when the quality and quantity
of the landscapes are reduced in areas that are attractive for recreational activities. Also, changes in Land Use and
Land Cover can affect traffic patterns that can have positive or negative effects on congestion.

Air Quality: The pattern of land use in a region can affect its air quality. If residential areas are located far from
shopping and work centers, automobile use and emissions will be higher. If forests or other natural areas that
purify air are developed, local air quality can worsen. Changes in vegetative cover can also lead to local changes
in climate.

Global Carbon Cycles: More-natural landscapes can capture and store carbon in the soil, decreasing the amount
of carbon dioxide in the atmosphere. If vegetation is cut and/or the soil is disturbed, stored soil carbon can be
released back into the atmosphere. Several studies have examined the social and economic factors that drive
Land Use and Land Cover change. These include:

Population Growth or Decline: As a region’s population grows, the new residents need housing, as well as
places to work and shop. In a region with declining population, there will be less new construction of homes and
businesses.

Economic Growth: A booming regional economy will result in construction of new commercial and industrial
buildings to house that activity. As the economy grows, the new jobs created will attract workers, leading to
population growth, leading to construction of new homes and places to shop. As incomes rise, household may
choose to build new larger homes on larger lots, leaving smaller, older houses vacant.

Demographics: The average number of people living in a household has been decreasing over time. Therefore,
more housing units are needed to house the same number of people. The number of retired households is increasing,
and these households tend to have few members. Meanwhile, the proportion of non-white households is also
increasing, These households tend to have more members on average than white households.

Agricultural and forest products: A change in the price of agricultural or forest products can affect landowners’
decisions whether to keep the land in those uses. Policies aimed at supporting agricultural prices provide an
incentive to keep land in farming.

Regional and local planning and policies: Regions can influence the rate at which land use and land cover
change through a variety of means.

2.9.1. Land Use & Land Cover Change Detection with Remote Sensing data

An increasingly common application of remotely sensed data is for change detection. Change detection is the
process of identifying differences in the state of an object or phenomenon by observing it at different times (Singh,
1989). Change detection is an important process in monitoring and managing natural resources and urban
development because it provides quantitative analysis of the spatial distribution of the population of interest.
Change detection is useful in such diverse applications as land use change analysis, monitoring shifting cultivation,
assessment of deforestation, study of changes in vegetation phenology, seasonal changes in pasture production,
damage assessment, crop stress detection, disaster monitoring, day/night analysis of thermal characteristics as
well as other environmental changes (Singh, 1989).

Macleod and Congalton (1998) list four aspects of change detection which are important when monitoring natural
resources:
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• Detecting that changes have occurred

• Identifying the nature of the change

• Measuring the areal extent of the change

• Assessing the spatial pattern of the change

The basic premise in using remote sensing data for change detection is that changes in land cover result in
changes in radiance values which can be remotely sensed. Techniques to perform change detection with satellite
imagery have become numerous as a result of increasing versatility in manipulating digital data and increasing
computing power.

A wide variety of digital change detection techniques have been developed over the last two decades.
Singh (1989) and Coppin & Bauer (1996) both provide excellent and comprehensive summaries of methods and
techniques of digital change detection. Coppin & Bauer (1996) summarize eleven different change detection
algorithms that were found to be documented in the literature. These include:

• monotemporal change delineation

• delta or post-classification comparison

• multidimensional temporal feature space analysis

• composite analysis

• image differencing

• image ratioing

• multitemporal linear data transformation

• change vector analysis

• image regression

• multitemporal biomass index

• background subtraction

The scientific literature reveals that digital change detection is a difficult task to perform accurately and unfortunately,
many of the studies concerned with comparative evaluation of these applications have not supported their conclusions
by quantitative analysis (Singh, 1989). Digital change detection is affected by spatial, spectral, temporal, and
thematic constraints. The type of method implemented can profoundly affect the qualitative and quantitative estimates
of the change. Even in the same environment, different approaches may yield different change maps. The selection
of the appropriate method therefore takes on considerable significance. Not all detectable changes, however, are
equally important to the resource manager. On the other hand, it is also probable that some changes of interest
will not be captured very well, or at all by any given system.  Figure 2.5 illustrates LULC change detection
capabilities of satellite data.

According to recent research by Coppin & Bauer (1996), image differencing appear to perform generally better
than other method of change detection; and such monitoring techniques based on multispectral satellite data have
demonstrated potential as a means to detect, identify, and map changes in forest cover. Image differencing is
probably the most widely applied change detection algorithm for a variety of geographical environments (Singh,
1989). It involves subtracting one date of imagery from a second date that has been precisely registered to the
first.

The vegetation index (VI) differencing is one of the most popular change detection algorithms. The fundamentals
for this technique rely on the idea that if VIs are correlated to biomass, then the decrease of vegetation can be
detected by a difference of VI images (one before and other after the land cover change). In this method, the first
step is to calculate a differencing image by subtracting two coregistered images, followed by the application of a
threshold to distinguish significant spectral differences as areas of land cover change. Four types of VI can be
tested: (1) Normalised Difference Vegetation Index (NDVI) one of the most common indices used in remote
sensing studies, (2) the Atmospherically Resistant Vegetation Index (ARVI), which accounts for the atmospheric
influence in the sensor output, (3) the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) that accounts for the
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background effect, and (4) the Modified Soil Adjusted Vegetation Index (MSAVI2), which is an improvement of
SAVI. Change Vector Analysis (CVA) is another well-accepted change detection technique. The change vector of
a pixel is defined as the vector difference between the multi-band digital vectors of the pixel on two different dates.
When a forest suffers a change, its spectral characteristics also change. The vector describing this change is
known as the pixel change vector and describes the intensity and the direction of the change that occurred
between the first and the second date. The CVA is applied to two co-registered bands of an image, in two different
dates. With this method, two images are computed: one image for the vector intensity and another for the vector
direction. The first image contains the information of change, while the second contains information on the type of
change. CVA can be applied to two different spectral data sets: original TM bands and the components of the
Tasseled Cap transformation, brightness (B), greenness (G) and wetness (W).

Principal Components Analysis (PCA) is another technique available. PCA is one of the most popular multivariate
analysis techniques for data reduction. The PCA transformation  leads  to  the description of multidimensional data
in which axis variables are uncorrelated. In the transformed data, the first variable or component (PC1) contains
the higher variance present in the data while the subsequent variables contain decreasing proportions of data
scatter. Experiments have shown that the first components contain the unchanged spectral information, while the
changed information is contained in the latter components (Byrne et al., 1980). PCA can be performed on original
or standardised data, The former uses the covariance matrix, and the latter uses the correlation matrix.

  Figure 2.5:  Land Use/Lland Cover Chage detection using post-classification comparision technique
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2.10. Land Use Modeling

Land is a dynamic canvas through which human and natural systems interact. Understanding the many factors
influencing Land Use Cover Change (LUCC) has been the focus of scientific study across multiple disciplines,
locations, and scales. But direct measurements alone are not sufficient to provide an understanding of the forces
driving change. Linking observations at a range of spatial and temporal scales to empirical models provides a
comprehensive approach to understanding land-cover change (Turner et al.,1994).

The primary utility of models is to provide a systematic approach to understanding a research problem.
An important aspect is the link between direct observations, case studies, and models in an effort to test or
identify dominant features of land-cover change. Development of diagnostic models can lead to an improved
understanding of the current and recent situation and at the same time provide credible, geographically-referenced
predictions. The length of time over which a prediction is valid is a function of the persistence of the observed
phenomena. There is evidence to suggest that much, if not most, land-cover change is spatially and temporally
persistent over 10 to 15 year intervals. It should be noted, however, that certain events can alter trends significantly
and rapidly. Changes in political, institutional, and economic conditions can cause rapid changes in the rate or
direction of land-cover change. Therefore, an effort to understand the primary kinds of influences which cause land-
cover change trends to diverge rapidly is also an important component of this programme. 

Several different approaches are used to project future Land Use and/or Land Cover. These can be divided into two
broad categories: a) models that predict total land use change for a region, and b) models that predict Land Use
for specific parcels or grid cells. If the analyst wants to know the total amount of land use change that will occur
in a large region like a state, then the first type of model is appropriate. On the other hand, if the analyst wants to
know where in the region land use change will occur, or to project what will happen at a specific place, then the
second type of model is appropriate.

The goal of this discussion is to provide a broad overview of these models, offer our perspective on their potential
role in LUCC modeling, discuss some key issues related to their development and implementation, and briefly
review ongoing research based on this modeling paradigm.

2.10.1. Approaches to Modeling Land-Use/Cover Change

The strengths and weaknesses of seven broad, partly overlapping, categories of models: mathematical equation-
based, system dynamics, statistical, expert system, evolutionary, cellular, and hybrid are discussed for comparison.
This review is not exhaustive and only serves to highlight ways in which present techniques are complemented by
those models that combine cellular and agent-based models. More comprehencive overview of LUCC Modeling
techniques is given by Agarwal, 2000.

Equation-Based Models

Most models are in some way mathematical, but some are especially so in that they rely on equations that seek
a static or equilibrium solution. The most common mathematical models are sets of equations based on theories
of population growth and diffusion that specify cumulative land-use/cover change over time (Sklar and Costanza,
1991). A variant of this model is based on linear programming (Howitt, 1995), potentially linked to GIS information
on land parcels (Cromley and Hanink, 1999). A major drawback of such models is that a numerical or analytical
solution to the system of equations must be obtained, limiting the level of complexity that may practically be built
into such models.

System Models

System models represent stocks and flows of information, material, or energy as sets of differential equations
linked through intermediary functions and data structures. Time is broken into discrete steps to allow feedback.
Human and ecological interactions can be represented within these models, but they are dependent on explicit
enumeration of causes and functional representation, and they accommodate spatial relationships with difficulty
(Sklar and Costanza, 1991).

Statistical Techniques

Statistical techniques are a common approach to modeling land-use/cover change, given their power, wide
acceptance, and relative ease of use. They include a variety of regression techniques applied to space and more
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tailored spatial statistical methods . Unless they are tied to a theoretical framework, statistical techniques may
downplay decision making and social phenomena such as institutions. Successful examples of combining theory
and statistics are provided by spatial econometrics (Leggett and Bockstael, 2000).

Expert Models

Expert models combine expert judgment with nonfrequentist probability techniques such as Bayesian probability
or Dempster-Schaefer theory or symbolic artificial intelligence approaches such as expert systems and rule-
based knowledge systems (Lee et al., 1992). These methods express qualitative knowledge in a quantitative
fashion that enables the modeler to determine where given land uses are likely to occur. It can be difficult to
include all aspects of the problem domain, however, which leaves room for gaps and inconsistencies.

Evolutionary Models

Within the field of artificial intelligence, symbolic approaches such as expert systems are complemented by a
biologically inspired evolutionary paradigm. Exemplars of this field, such as artificial neural networks and evolutionary
programming, are finding their way into LUCC models (e.g., Balling et al.,1999). In brief, neural networks are
silicon analogs of neural structure that are trained to associate outcomes with stimuli. Evolutionary programming
mimics the process of Darwinian evolution by breeding computational programs over many generations to create
programs that become increasingly able to solve a particular problem.

Cellular Models

Cellular models (CM) include cellular automata (CA) and Markov models. Each of these models operates over a
lattice of congruent cells. In CA, each cell exists in one of a finite set of states, and future states depend on
transition rules based on a local spatiotemporal neighborhood. The system is homogeneous in the sense that the
set of possible states is the same for each cell and the same transition rule applies to each cell. Time advances
in discrete steps, and updates may be synchronous or asynchronous (Hegselmann 1998).  In Markov models, cell
states depend probabilistically on temporally lagged cell state values. Markov models may be combined with CA
for LUCC modeling as evidenced by joint CA-Markov models (Balzter, Braun, and Kohler 1998). Global land-use/
cover change in response to climate change (Alcamo, 1994).

Cellular models have proven utility for modeling ecological aspects of land-use/cover change, but they face challenges
when incorporating human decision making. It is necessary to use complex hierarchical rule sets to differentiate
between the kinds of decision making that apply to groups of cells, such as local land tenure structure (e.g., Li,
2000). While effective, these deviations from generic cellular automata come at the potential cost of moving away
from the advantages of the generic approach. In particular, “in order to converse with other disciplines, from biology
and physics to chemistry, it may be necessary that the form of CA preserve as many features of strict and formal
CA models as possible” (Torrens and O’Sullivan, 2001).

2.10.2. Hybrid Models

Hybrid models combine any of the above-mentioned techniques, each of which is a fairly discrete approach unto
itself. A prime example is estuarine land-use/cover transition modeling that has an explicit, cellular model tied to
a system dynamics model (Costanza, Sklar, and Day, 1986).  Other examples that combine statistical techniques
with cellular models and system models include larger-scale models such as  CLUE family (Veldkamp and
Fresco, 1996).

A distinct variant of hybrid models is dynamic spatial simulation (DSS), which portrays the landscape as a
two-dimensional grid where rules represent the actions of land managers based on factors such as agricultural
suitability ( Lambin, 1994). Dynamic spatial simulation typically does not represent heterogeneous actors, institutional
effects on decision making, or multiple production activities. However, due to their ability to represent individual
decision making and temporal and spatial dynamics, they represent an important advance over previous models
(Lambin, 1994).

2.10.3. Agent-Based Models

While cellular models are focused on landscapes and transitions, agent-based models focus on human actions.
Agents are the crucial component in these models. Several characteristics define agents: they are autonomous,
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they share an environment through agent communication and interaction, and they make decisions that tie behavior
to the environment. Agents have been used to represent a wide variety of entities, including atoms, biological cells,
animals, people, and organizations (Conte et al., 1997; Janssen &  Jager, 2000).

One key difference exists between agent-based modeling and other techniques. Complex systems are often
characterized by nonlinear relationships between constantly changing entities while systems theory typically
studies static entities linked by linear relationships defined by flows and stocks of energy, information, or matter.
Similarly, systems theory emphasizes quantities of flow and not necessarily their quality, while complexity research
attempts to examine qualitative attributes such as learning and communication. Complex behavior is seen as
emerging from interactions between system components while system models tend to favor parameterized flows
and stocks that assume that the system exists in equilibrium due to fixed relationships between system elements.
Agent-based modeling relies on the idea that emergent or synergistic characteristics are understood by examining
subcomponent relationships.

2.10.3.1. Multi-Agent Systems (MAS)  for Land-Use/Cover Change

The exploration of modeling thus far has raised three key points. First, of the host of methods used to model land-
use/cover change, dynamic spatial simulation offers a promising degree of flexibility. Second, as noted above,
cellular models successfully replicate aspects of ecological and biogeophysical phenomena, but they may not
always be suited to modeling decision making. Third, agent-based modeling is a promising means of representing
disaggregated decision making. When all three points are taken together, they suggest the use of a dynamic,
spatial simulation-like MAS/LUCC model that consists of two components. The first is a cellular model that
represents biogeophysical and ecological aspects of a modeled system. The second is an agent-based model to
represent human decision making. The cellular model is part of the agents’ environment, and the agents in turn act
on the simulated environment. In this manner, the complex interactions among agents and between agents and
their environment can be simulated in a manner that assumes equilibrium conditions. Rather, equilibria or transient
but reoccurring patterns emerge through the simulated interactions between agents and their environment.

2.10.4. Current Applications of MAS/LUCC Modeling

Many well-developed techniques for modeling land-use/cover dynamics exist. However, each of these techniques
has some limitations. Equation-based models may require simplifying assumptions to achieve analytical or
computational tractability, and they are often based on empirically implausible assumptions regarding static
market equilibria. System models directly address the shortcomings of equation-based models in terms of
representing feedbacks and dynamic processes, but these models also operate at a very aggregated level, or,
equivalently, at a very coarse temporal and spatial resolution. Therefore, where local heterogeneity and interactions
are important, such models may have limited explanatory power.

Some insight into the impacts of spatial heterogeneity, neighborhood effects, and spatial spillovers can be gleaned
through estimation of statistical models. However, these models distill information into parameter estimates that
represent average effects over available data. Thus, such models may be useful for projecting spatial dynamics
and interactions only for processes which are stationary and uniform over space and time. While the impacts of
spatial influences occurring at hierarchical spatial scales can be represented to some extent through statistical
techniques that account for regional heterogeneity (such as generalized least-squares, fixed-effect, and random-
effect models), feedbacks across scales cannot be effectively modeled. While cellular modeling techniques offer
greater flexibility for representing spatial and temporal dynamics, these dynamics also are based on stationary
transition probabilities. Therefore, such models have limited ability to reflect feedbacks in the system under study,
as global changes in the system do not influence transitions at the cellular level. Perhaps most significant, none
of the above modeling techniques can represent the impacts of autonomous, heterogeneous, and decentralized
human decision making on the landscape.

Many of these limitations are potentially overcome by MAS/LUCC models. In particular, MAS/LUCC models may
be well suited for representing socioeconomic and biophysical complexity. They also might be well suited for the
related goal of modeling interactions and feedbacks between socioeconomic and biophysical environments.

2.11. Land Use/Cover Change, Climate and Environment

2.11.1. Effect of land use/land cover on local climate

Land surface changes can affect local precipitation and temperatures. Vegetation patterns and soil composition
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can influence cloud formation and precipitation through their impact on evaporation and convection i.e., the rise of
air, The effect of land cover on climate depends on the type of land cover that is present in a specific region. For
example, barren lands tend to heat more rapidly and can transmit this heat to the lower atmosphere.

A recent study of the United States on summer climate using computer models of NASA and the National Oceanic
and Atmospheric Administration found that land cover changes from grassland to agriculture in part of the Great
Plains and the Midwest brought as a result a significant cooling effect. A possible explanation is that farmlands
tend to create lower temperatures due to increase in evaporation. In the same study, a warming effect associated
to land use change from forest to croplands was found along the Atlantic cost of the United States. Within the
climate system, forests are more efficient in transpiration processes where the evaporation of plants during
photosynthesis and helps to cool the air.

Land surface changes can affect local temperatures not only in forests or agricultural land but also in urban areas.
For example, average temperatures in downtown areas of a city can increase due to the high density of construction
materials such as pavements and roofs. Higher temperatures in urban areas compared to lower temperatures in
surrounding rural areas, has been called by scientists the urban heat island effect.

2.11.2. Effect of land use/land cover on global climate

Every new building constructed consumes energy both in its construction and use. Single family homes use more
energy per person than multifamily homes. Larger homes use more energy than smaller homes. The farther new
homes are from existing population centers, from work and shopping, the greater the additional energy use in
transportation per home and per person. Because of the strong links between energy use, greenhouse gas
emissions and climate change, rates of new construction are strongly related to rates of climate change, especially
when this new construction is relatively distant from existing population centers.  

Moreover, the consequences of new construction for climate change go beyond their effects on Green House
Gases (GHG) emission rates. Areas under forest, wetland, even agricultural fields serve as Carbon ‘sinks’. That is,
they absorb and retain Carbon from the atmosphere. New construction then not only increases rates of GHG
emission, it reduces the amount of Carbon that is stored in areas with vegetative cover. There are differences in
carbon storage of ‘undeveloped’ areas: forests store more carbon than farmland; different forest-types store different
amounts of carbon; farming practices with minimal tillage and/or which include trees or perennials store more
carbon than those with complete tillage and only annual row crops.

2.11.3. Impact of climate change on land use/land cover

The effect of climate’s impact on land cover refers to the direct and indirect influence that climate has on the
vegetation, or other features that cover the land (Ecosystems). Climate change produces alterations in water,
energy and carbon fluxes. It also could also produce environmental disturbances that directly or indirectly affect
land cover. For example, species respond to disturbances produced by climate change through migration, extinction
or adaptation to new disturbances.

Most of the work that has looked at the impacts of climate change on Land Use has focused on agricultural land
and forests. Variability in climate can affect agricultural land patterns due to a) rainfall patterns.
b) temperatures (particularly night temperatures) and c) CO

2
 enrichment. Controlled experiments have found that

greater variability in rainfall patterns result in lower overall plant growth due to decreased water availability in the
upper 30 cm of soil. Higher temperatures are likely to make growing seasons longer, allowing the possibility of
more than one cropping cycle during the same season as well as the expansion of agricultural and forest land
towards the poles and to higher elevations. At the same time, increases in night time temperatures can affect
biological processes such as respiration and could result in reduction of potential yields.

Scientists are trying to understand the responses of CO2 enrichment (higher volumes of CO2 in the atmosphere) on
different species. Wheat, rice and soybeans are crops that seem to have a positive response (increased overall
observed growth) to higher CO

2
 levels in the atmosphere. Crops such as corn are likely to be less responsive to

CO2 enrichment. Other potential impacts of climate change on land cover include: Natural fire frequency, intensity
and duration and potential rise of sea level and floods, especially in coastal areas.

Given all the factors mentioned above, the net impact on agriculture in a particular area could be positive or
negative. If climate change makes agriculture less productive in an area, then more farm land will be converted to
other uses. If climate change offers more agricultural produce in an area, land that is currently in forests may be
converted to agricultural uses.
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Humans can also respond to climate change through migration. If warmer places are considered amenities to
humans, population density can increase in areas with higher temperatures. The new population settlements
indirectly affect land cover as more development and land fragmentation occurs. Proactive land use planning can
be used to anticipate and adapt to Climate Change. The following are examples of potential strategies to minimize
the potential negative impacts from climate change:

• One possible impact from climate change is an increase in severity of storms, which would lead to an
increase in flash flooding. Adaptation strategies include banning new construction in vulnerable areas with
high risk of flooding, minimizing flashy runoff from impervious surfaces, changing the requirements for stormwater
retention structures in new developments, and protection of wetlands that buffer runoff from heavy rainstorms

• Increased temperatures will make urban heat effects more severe. Land use planning should reduce urban
heat effects, through maintenance of green areas, use of different building materials

• The global climate in future is expected to become more variable. This will increase stress on natural ecosystems.
Species that rely on natural, undisturbed habitat will have difficulty surviving droughts and storms, particularly
if that habitat exists only in small patches. These habitats will be more resilient to climate variation if they are
connected, so that populations can move and repopulate areas that are impacted by drought or severe
storms. Land use planning can include provisions for habitat corridors that connect isolated patches of suitable
habitat

• As sea levels rise, the shoreline along coastal areas will erode. Where there are beachfront or bayfront
houses, the owners will try to protect their property, through shoreline hardening for example. It is much
easier to adapt to sea level rise if those properties are not built to begin with. Land use policies that discourage
shoreline building will leave communities more flexibility to deal with sea level rise

• Climate change will make some agricultural areas more suitable for production and other areas less so. The
impacts of climate change on agriculture will be less if production is allowed to move in response to changing
climate. Some land that is not currently suitable for agriculture because of climate may become suitable in
the future. If that land is not available because it has already been developed, then the farming sector will be
less able to adapt. It may make sense to preserve land for future agricultural production, even if it is not
currently being used for that purpose. Similarly, forest land that is currently dominated by lower-valued species
may become more valuable in the future, and vice versa.

2.12. Conclusions

Earth observations have the potential to respond to the growing and urgent demand for timely and accurate land
cover information over large areas. In the recent past, land cover mapping from satellites has come of age, Through
research on various issues regarding data pre-processing, classification and accuracy assessment, new and
unique data / land cover products are being generated which could not be produced by earlier techniques. Many of
the technical limitations hampering further improvements in land cover mapping need to be removed in the next few
years, especially in the quality of satellite data (improved calibration, spatial and spectral resolution, spectral
coverage, geolocation accuracy) and the computing capability, founded on the accumulated knowledge and
experience in the use of digital analysis methods. This will require strong, ongoing research activities as well as
new initiatives in the production of land cover maps. The future research in  LULC studies  needs to address the
best ways of taking advantage of satellite-derived  land cover databases through LULC change modeling techniques
which provide important inputs  for studies in the emerging areas of environmental monitoring, global warming and
climate change.
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