

Satellite Observations for Ocean and Climate Studies

M.V. Ramana Climate Studies Group (CSG) Earth and Climate Sciences Area (ECSA) NRSC

UIM – 2022: March 29, 2022

Technical Session I: Indian Missions and Geospatial Services

nrsc

Missions - to - Parameter retrieval - to - Models - to - Services

National Information system for Climate and Environment Studies

url of NICES: http://bhuvan.nrsc.gov.in/data/download/index.ph

Thailand

Select Group:

Select Product :

Select Group

Orean Shiennes enestrial Science

National Information system for Climate and Environment Studies (NICES)

Satellite-retrieved geophysical product inventory (**70-products, including derived products**)

User downloads: about 40,000 downloads per year.

NICES: 15 products have the potential to become ECVs (28 of 54 ECVs are amenable through satellites).

Time span (products)	NICES Geophysical products
20-30 years (4)	Ocean Heat Content, Ocean Mean Temperature, Tropical Cyclone Heat Potential, Eddy Kinetic Energy
15-20 years (4)	Surface Soil Moisture, Forest Fire, Snow Melt and Freeze, Mean Sea Level Anomaly
10-15 years (7)	Chlorophyll, Kd_490, LULC, Land degradation, Tropospheric Ozone, Net sown area (Agriculture), Cloud Cover and Cloud Fraction
5-10 years (15)	Albedo, NDVI, Vegetation Fraction, Surface Water Body Fraction, Snow Cover Fraction, Himalaya Glaciers, Snow Albedo, Model-TCHP, Model- D26, Ocean Surface Currents, Total Alkalinity, Dissolved Inorganic Carbon, Planetary Boundary layer Height, Ocean Surface Winds, Wind Stress, Wind Curl, Sea Level Pressure.

Academia = 45%; R&D centres = 34%; Others = 21%

Terrestrial (35)

Geophysical: Albedo, NDVI (4)

Hydrology: Surface water body, Soil moisture, ET, Runoff (4)

Land cover: MM-5, WRF compatible, Veg Fraction (3)

Terrain and Soil: OC, IOC, f-soil depth, f-soil texture, f-water erosion, f-wind erosion, f-salt affected, Soil moisture (8)

Vegetation and Ecosystem: Average annual forest fire density, sd of AFFD, length of fire, f-forest, forest types, NSA, KSA, RSA, f-FA, NEP, NPP (11) **Cryosphere (5):** Snow melt and freeze (Indian Himalaya & Antarctica) (2), **Snow cover fraction** (1), Himalayan glacial lakes and water bodies (1), snow albedo (1)

Atmosphere (6)

Derived tropospheric Ozone (1), Boundary layer height (1), Cloud fraction and cloud top temperature (2), Number of Lightnings (1)

Ocean (29) OHC700(1) TCHP₍₁₎ OHC & OMT (2)Ocean surface winds (2) Wind stress (2) Wind curl: Wind curl, Ekman currents, geostrophic current, SSHA, ocean surface current, EKE, MMSLA (7) **Co-tidal map** (k101, M2s2) (2) Model derived: 26 degree isotherm, TCHP(2)Sea level pressure (1) Ocean color: Chlorophyll concn $(OC_3,$ OC₄), Kd₄₉₀, Total Alkalinity, Dissolved Inorganic Carbon, pCO₂ (6)

National Satellites: 24 products International Satellites: 15 products Model outputs: 8 products

Satellite measured Chlorophyll Concentrations

Satellites used: Oceansat-2/OCM II Period of data availability: 1999 - 2020 Resolution: Spatial- 1km & 4km Temporal - 2 day, 8 day & Monthly Level of information: Global & Indian Ocean

BLUE ECONOMY potential: a critical parameter

 \triangleright Removal of CO₂ from the atmosphere:

ρCO₂ maps

Biological processes in the ocean: PFZ, productivity, ...

Cloud Condensation Nuclei

Ocean Winds and Currents

Ocean Winds

Ocean Currents

Satellites used:	SARAL:ALTIKA, OSCAT &
SCATSAT	
Period of data availability:	2010 – Till date (Data
Gap 2014-2016)	
Resolution:	Spatial- 0.25° x 0.25°
	Temporal - Daily
Level of information:	Global

Ocean Surface Currents over the global oceans are generated at daily basis based on data of Sea Surface Winds from the ISRO's OSCAT, SCATSAT Winds and SARAI-ALTIKa/AVISO sea level data records.

Harvestable Wind Energy (1979-2018) at 100m level

Merged product – Ocean Surface currents

28-year Ocean Surface Currents data from 1993 to 2021

Satellites used: Altimeters (T/P, JASON 1/2/3, SARAL Altika etc.,) & Scatterometers (QuikSCAT, OSCAT, ASCAT, SCATSAT etc.,) and merged NOAA AVHRR SST data

Period of data availability: 1993 -

February 2021

Resolution:

Spatial : 25 km x 25 km Temporal: Daily

Level of information: Global coverage

Reference: Rajesh Sikhakolli, Rashmi Sharma, Raj Kumar, B. S. Gohil, Abhijit Sarkar, K. V. S. R. Prasad & Sujit Basu (2013) Improved determination of Indian Ocean surface currents using satellite data, Remote Sensing Letters, 4:4, 335-343, DOI: 10.1080/2150704X.2012.730643

Figures: Monthly Climatology of Ocean Surface Currents (1993-2019) over Indian/Global Ocean

New products: Winds, Water vapour, etc.

Harvestable Tidal Energy

North-western continental shelf of India (Gulf of Khambhat)

Potential location for Tidal Energy Harnessing

Inputs to Ocean model: Bathymetry, winds, tides, heat fluxes at air-sea interface

<u>Model outputs the ocean</u> currents; which in turn processed for diagnostic analysis of <u>tidal energy</u> <u>harnessing</u> for the study region.

Atmosphere: Cloud Cover and Cloud Top Temperatures

Satellites used: Period of data availability: Resolution: Kalpana-1, INSAT-3D 2015 - till date Spatial- INSAT-3D (4km x 4km), Kalpana-1 (8km x 8km) Temporal – Half-hourly

Users:

- (i) Climate Studies & Climate model evaluations
- (ii) Extreme weather events
- (iii) Renewable Energy & Now-casting

Solar Radiation & Wind Forecast

NTPC: Solar energy forecast over Noida and Ananthapur

Diffuse

As evaluated by the NTPC

(observed - predicted < ±50) = 100% clear-sky (observed - predicted < ± 200) = 80% all-sky

- Objective: Day-ahead forecast of surface reaching solar radiation and wind speeds at 10m level using space technology.
- Study area: Over India at 15min interval.
- Satellite Data: LULC,AOD, SSA From OMI
- Benefits: Expected power production on various temporal and spatial scales.

User: <u>NTPC</u>, Renewable Energy, Carbon footprint, Climate studies

Atmospheric Lightning Detection Sensor Network

Prominent Registered Users (93+):

IMD, NESAC, NARL, SAC, IITM, IISC, NCESS, NIT-Rourkela, IIT-Bhubaneswar, IIT-Patna, NIT-Allahabad, Andhra University, Tea Research Institute-Assam, DAVV-Indore, Indian Institute of Geomagnetism-Mumbai, Kolhapur university, Vidyasagar university, CGCOST etc....

Atmospheric Rivers: Alerts

इसरी ांडल्व

Nationwide Soil Moisture

19-year Soil Moisture data set from 2002 to 2021

Monthly Averaged Soil Moisture (m3/m3)

Vegetation water content and soil moisture

Satellites used: AMSRE & AMSR2 Data availability: 2002 - till date Resolution: Spatial : 25 km x 25 km Temporal: 2 days National coverage

Land Use Land Cover

The land use land cover (LU/LC) data generated using 56m basic resolution AWiFS data from the Indian satellite IRS P6, has been remapped and scaled to 5 minute, 2 minute and 30 second resolutions. The Indian region of USGS data has been replaced with the AWiFS derived data such that it is compatible to MM5 and WRF models.

30second AWiFS derived LU/LC

Satellites used: Period of data availability: Resolution:

Level of information:

Resourcesat-2 / AWiFS 2004-05 to 2019-20 Spatial- 30"/2'/5' Temporal – yearly Global

Model: Ecosystem and Carbon Cycle modeling

Aim to integrated regional data bases for better and comprehensive understanding of Carbon Cycle over India in response to the climate change (NDVI, LULC, soil attribute map, precipitation, solar radiation, airtemperature)

▷ NEP budgets of India during 1981-2020 shows Indian terrestrial Ecosystem is the net sink of atmosphere CO_2 during most of the years with mean NEP is 20 TgC Yr⁻¹

These data are useful to assess the health of ecosystem, CO_2 source and sink strength and studies pertaining to food and energy security and climatic change variability.

Thank you For your kind attention

For further details, please contact

Director

Programme Director

NES

National Remote Sensing Centre Indian Space Research Organisation Department of Space, Govt. of India Balanagar, Hyderabad +91-40-23884001 director@nrsc.gov.in National Information system for Climate and Environment Studies Indian Space Research Organisation Department of Space, Govt. of India Balanagar, Hyderabad +91-40-2388 4258/2377 1515 ddecsa@nrsc.gov.in