

Presentation at NRSC- UIM at JNTU on 12-03-2024

Applications of UAV imaging techniques for characterization of plantation crops

R. Hebbar, Scientist "G" & General Manager Regional Remote Sensing Centre – South National Remote Sensing Centre, Indian Space Research Organization, Bengaluru hebbar_kr@nrsc.gov.in

Need for very high resolution images

Coconut trees in different Spatial resolutions

L-4+C-1 (2.5m)

C-2E (1.6m)

C-2E (60cm)

nrsc

UAV MX (0.15m)

***** UAS plays an important role in near-real time field data collection & validation of satellite derived products

nrsc

Advantages and disadvantages Imaging platforms

	Platform	Advantage	Disadvantage
1	Satellite	Stable platform, Covers large area in short time, Reasonable good spatial, spectral and temporal resolutions. Availability of historical data	Very tilt angle. Difficult to obtain VHRS data of uniform acquisition period.
2	Aerial	Stable platform, Covers relatively large area, Need based data acquisition with in Short period, Capable of carrying large payload	Expensive, Strict guidelines, Lack of historical data, big data requiring.
3	UAV	Very convenient, Need based acquisition in short time, Very good plat from for detailed studies at micro level	Lack of long endurance, Platform instability due to wind, Processing related issues, Need Radiometric normalization
4	Ground	Controlled environment, Good repeatability, Very accurate	Expensive, Tedious and time consuming

Synergistic use of Ground, UAV and Satellite based information has immense benefits for near real-time monitoring of vegetation for planning at micro level

Imaging Sensors Used for Agriculture

nrsc

S. N	Instruments	Applications
1	RGB	Detailed LULC mapping, Projected leaf area, 3D model, Volume, Geometry, pests & diseases, detailed soil mapping
2	Multispectral	Crop acreage, Crop growth monitoring, Density, Leaf Area Index, Green biomass, yield, soil mapping, soil nutrients
3	Hyperspectral	Physiology and biochemistry, Nutrition, Insect & Pests, Phenotyping
4	Thermal	Canopy temperature, Evapo-transpiration, insect & pests, crop yield estimation
5	Lidar	Plant height, 3-D model, canopy architecture, Volume, Leaf angle, Biomass
6	Fluorescence	Photosynthetic rate, quantum yield, leaf health, Chlorophyll status

Assessment of Inter and Intra field Variability

RGB Image

Assessment of Inter and Intra-field soil & crop variability for improved farm management

Multi-spectral Image

इसरो ंडल्व

nrsc

nrsc

Different types of Horticulture crops in IIHR Campus

Avacado

Jack Fruit

Mango

Sapota

nrsc

Different types of Horticulture crops in IIHR Campus

Jack Fruit

Sapota

nrsc Hogalagere Horticulture Farm, Srinivaspura Taluk , Kolar District

BembayGrr

INDO-ISRAEL center for Excellence for Mango – MDC (64 Verities of Mango)

इसरो ंडल्व

nrsc

Varietal Discrimination of Mango Orchards – IIHR Campus

Alphonso Flowering

Totapuri Flowering

Alphonso Mango

Thotapuri Mango

Banganapalli Mango

Cashew at HRS – Different Densities, Holagere, Kolar District

nrsc

इसरो ंडल्व

nrsc Spectral and spatial patterns of major plantations in RGB & MX Image

इसरो ंडल्व

RGB Images (5 cm)

Multispectral Images (15 cm)

AI/ML techniques for processing and analysis RGB images

nrsc

Assessment of coconut plantation using VHRS Image & DL

nrsc

U-Net Architecture	Accuracy %
MobileNet	83.51
ResNet-152	84.62
VGG-19	86.96
DenseNet-121	87.93
Siamese U-Net	89.17
Custom U-Net	91.88

Semantic Segmentation – coconut plantations

b. Densenet

a. Mobilenet

c. Hybrid Siamese

d. Custom Unet

IEE InGARSS - 2021

Semantic Segmentation of UAV Images

Annotated chips (1276 x 1276)

nrsc

Plantation crop maps

Arecanut Coconut Trees Buildings

Accuracy ranged from 76.2 % to 90.1 %

Tree Detection in ICAR-IIHR test site using UAV image & DL

No.

Trees

12623

7526

1547

545

158

Tree countingTree height (m)Image:</td

Digital Surface model(DSM)

nrsc

GeographicalArea	273 ha.
Retina net Model Accuracy	85.3%
Карра	0.72
Total number of Trees	22426
Tree height	5m-25m
Average height	4.8m
Canopy cover area	3m ² -91m ²

85.6 % accuracy

Projected Canopy area (Sq.m)

Range	No. Trees
< 5.0	14515
5-10	5409
10-19	2029
19-37	418
<37	55

Species level identification using UAV image & DL

Ground Truth Collection

nrsc

& Labels

leight

.921 - 10.083 .335 - 4.92 1.39 - 1.334

Tree Height Estimation (using UAV DSM & DTM)

Training Samples (223)

1048x1048 pixel grids

Zoomed view showing different tree heights

Major Tree Species identified on UAV RGB image

Tree Species level identification using UAV image & DL

nrsc

Model Training & Validation	Input ima	ge GT m	ask pre	diction
(U-Net, Deeplabv3 & FCN)			K 「	
	Tamarin			
Inference (Prediction)				
Output				
	- Corenia			
		Model compa	arison	
	Model	Backbone	Mean accuracy	mloU
	U-Net	ResNet-50	0.87	0.69
	DeepLab	ResNet-50	0.88	0.73
classes	FCN	ResNet-50	0.85	0.67

Sample model prediction results

Class	Accuracy	Precision	Recall
Coconut	0.89	0.91	0.88
Acacia	0.86	0.88	0.83
Bamboo	0.84	0.83	0.87
Tamarind	0.82	0.80	0.81
Shrubs	0.71	0.75	0.62
Pongamia	0.61	0.55	0.62
Agave	0.42	0.43	0.47
Others	0.42	0.57	0.58
All Trees	0.91	0.94	0.95

Accuracy Assessment

Lack of representative of training samples

Deep Learning Framework for Inventory of Plantation Crops

Accuracy ranged from 83.2 to 94.6 per cent

nrsc

Development of Benchmark datasets

- Very High resolution (0.6m) Carto-2 and Kompsat datasets used
- U-Net, Deeplab v5 and FCN models have been adopted for development of DL model
- The accuracy ranged from 83.2 to 94.3 percent for plantation crop type mapping
- Augmentation of training sample for generation of single DL model for regional national level application

Trunk Detection using MMS + UAV LiDAR data

UAV LiDAR Point Cloud

nrsc

Mobile Mapping Unit

- Diameter at 1.3 meter Height
- Tree height
- Canopy Area

Central Coffee Research Institute - Balehonnur

2	Α	В	С	D	E	F
1	ID	Easting_m	Northing_m	DBH_cm	Height_m	Area_m2
2	4	546389.3806	1478051.343	30.26290332	18.01	35.3
3	5	546395.0704	1478049.482	27.51492456	22.1	42.3
4	13	546383.8125	1478025.776	39.60516972	27.6	37.8
5	14	546397.9985	1478018.863	61.51666546	22.68	39
6	17	546395.4755	1478003.712	52.54119174	31.4	42.2
	-					

Pests and diseases identification of citrus orchards using UAV data nrsc

Citrus orchards extracted using RF classifier

इसरो ांडल्व

Citrus canopy infested by Leaf Minor

Trinity F 90+ drone

- UAV applications evolved substantially in recent years with the prospect of partially replacing manual activities for generating geospatial products and services for preparing micro-level plans
- Synergistic use of satellite data with UAV data need to be explored for various scientific applications and development of improved of data analytics and products
- Data sharing, Collaboration, Capacity Building and Institutionalization for effective utilization of Geospatial technology

Thank you