
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0067028A1

US 2015 OO67028A1

KUMAR et al. (43) Pub. Date: Mar. 5, 2015

(54) MESSAGE DRIVEN METHOD AND SYSTEM (52) U.S. Cl.
FOR OPTIMIAL MANAGEMENT OF CPC H04L 67/10 (2013.01)
DYNAMIC PRODUCTION WORKFLOWS INA USPC .. 709/203
DISTRIBUTED ENVIRONMENT

(57) ABSTRACT
(71) Applicant: INDIAN SPACE RESEARCH

ORGANISATION, Bangalore (IN) Methods and system to control the data processing workflows
in distributed environment with asynchronous message

(72) Inventors: M. Naresh KUMAR, Andhra Pradesh driven mechanism. A production workflow includes an
(IN); Uzair MUJEEB, Andhra Pradesh ordered sequence of tasks to be executed that needs to be
(IN); Ashwini JOSHI, Andhra Pradesh distributed on multiple computational nodes. Each task is
(IN); M. Vidya, Andhra Pradesh (IN); assigned by a sender application to a receiver application
Raji.JOSE, Andhra Pradesh (IN); P. running on a computational node through a message. On
Samatha, Andhra Pradesh (IN); T. receiving the message, the receiver application sends and
Sailaja, Andhra Pradesh (IN); Sonu sends an acknowledgment to the message and schedules the
TOMAR, Andhra Pradesh (IN) Sub tasks associated with the task. The sender application on

receiving the acknowledgment removes the message from the
(73) Assignee: INDIAN SPACE RESEARCH queue otherwise the messages are stored in the database. On

ORGANISATION, Bangalore (IN) completion of the Sub tasks the receiver application generates
a message and the sender annlication on receipt of the mes

(21) Appl. No.: 14/015,693 Sage E. up the next E. the sequence E. generates a
(22) Filed: Aug. 30, 2013 message to another application. The sender application keeps

on generating messages till all the tasks are completed in the
Publication Classification sequence. The methods adopted in this invention provides

persistence and guaranteed delivery of messages thereby
(51) Int. Cl. improving the quality of service in transaction processing

H04L 29/08 (2006.01) systems that are managing complex workflows.

US 201S/OO67028A1 Mar. 5, 2015 Sheet 1 of 9 Patent Application Publication

US 2015/006.7028A1 Mar. 5, 2015 Sheet 3 of 9 Patent Application Publication

Patent Application Publication Mar. 5, 2015 Sheet 4 of 9 US 201S/OO67028A1

ots competio status -
arrived Y - -

c tie (iet
comgitig rode

-...-- - & Y

i validate grotyping constraints and gratip the jobs 3S
k per configuratose gro pig parameters /

50s . . y

- Check status of s.
Scess Faife

N o
N.

--- s y -- ------------------------- Y
- --- / Using FAs. RE: REASON COOE anö

; currett piocessing Center find flex
\processing center tram knowledge 233e

oute code for Job
Citigation Status arrived
e c

i? using route code and current : Si:) - ---
: processing Centerfirid text processing y- iss,
W Cater - Check if counter for next processing

a - center exceeds predesired irrit

A s --- -
Jpdate CGinter for text processing YES y / -- as

w Cee --. Y. S. 5t 2. ^
--- - Update next processing Cente as

Probiem Resciition Center
r 1 sis, 4 update approximate delivery : fieliaS asig

aniard timelines

514 A. y .s

update Metadata
processig Center

Remove he job frari CGripfing node OT
'. Rietie f

YES ...Y.
Ai; the jobs in queties f

s. Finished - > END
Fig. 4

Patent Application Publication Mar. 5, 2015 Sheet 5 of 9 US 201S/OO67028A1

so
Get next to Ofcief

602
S there a

No TY-\ext Job Orde

Compute actuatine taken by each previous work centre to complete
603 the job order and waiting tine at the current work centre.

global 4- X fi --
ise

604 Compute noniinal time for this type of job order at each work cente

global 4- f{h*n) X X Tii
it is:

606 Compute
Afglobal c globa -global

3. Compute Priority Pgioba by fitting a inear piece-wise
W Ode:

Pglobal {- P -- PCFC A global

Patent Application Publication Mar. 5, 2015 Sheet 6 of 9 US 201S/OO67028A1

Ge exit Wok Cere

is there a next
Work Centre

Get next ok reef for the
particular work centre

is there a
Next job de

Compute waiting time of the job order at the curfeit work Centre
local &- cur erry in

where Tour is the current time and in is the time at which job order
a?ived at the Ci?ie: Wik Cente

Compute nonira tirne for this type of job order at the cifrent work
Certie :

'a kaf X s
i:

to: f
local - Toca

Yes

708 Caipite
A:locals ocal -ocal

Compute Priority Pocal by fitting a near piece-wise

Poca. 6- P + PCF AToca)

Patent Application Publication Mar. 5, 2015 Sheet 7 of 9 US 201S/OO67028A1

- i Node status change message
R&ceived A

o Jp: Down -

e w - -------------------------f
S. Fetch a jobs pending at that ags Fetch jobs pending in

Odie i -...- ?nasters for assignment

- w (407 -
Put back all those jobs in master -----...-...--" -

is: i No. y Unsched tied Y
-- - jobs pending at >

an is, other rodes /
405 4-. N. \, -

; Redistribute jobs among other y - ^ -
awaiiabie Odes ; 408 --

w w
%. s

Fetch unscheduled jobs from ,
'other nodes for redistribution

... a y y s s as...............Y.........................

; Redistribute jobs amorga: ,
', sia Ocies

ob

F.C. i

Patent Application Publication Mar. 5, 2015 Sheet 8 of 9 US 201S/OO67028A1

latasase

coming
essages

Altaico?
Bonitorieg Agent

de Node 2 a.

ir
Ceue

{{Rites

Data Processing Quaily Check

FE8
W3 to

Patent Application Publication Mar. 5, 2015 Sheet 9 of 9 US 201S/OO67028A1

i? Data Yes Find type of ------
- Processing - . job order -

-

Fic: ai the suitabie Cardictates
along with their parameters

s -' N
- - - - - - - - - - - Job is No

,emergency- - - - - - - - - -.

36

Yes

Select Oce with east urber of
high priority product in quee Selects best rode considering

capacity & Current load

311 . . y
--------a - 3 M ultiples N -------...-- S. 4- s -

- Odes - 1. - Nurnber of s.
-r-, N - r. N. s. -
3:2 . - si selected nodes

. w :- ------------ st
N ? s

Select single node using 308 >i
tie rediction r

33 - - -. w ;Select singie node using ties
A ... : v, resolution

- Selected rocess Y.
is is ful u

r. 4. Y. *ss -r-,
y Peempt existing x : 339

insched tied jobs for the : ---...--
N. rode / Y y s

b Assign job to rode -

US 2015/OO67028A1

MESSAGE DRIVEN METHOD AND SYSTEM
FOR OPTIMIAL MANAGEMENT OF

DYNAMIC PRODUCTION WORKFLOWS INA
DISTRIBUTED ENVIRONMENT

FIELD OF TECHNOLOGY

0001. The present disclosure relates to systems, appara
tuses and methods for data processing systems to collaborate
and accomplish dynamic workflows in a distributed environ
ment.

0002 More particularly the present disclosure relates to
techniques for managing dynamic production workflows
through a persistence based message driven asynchronous
communication between applications in a distributed envi
ronment. In addition, the workflows may be orchestrated in
Such a manner that the processing applications accomplish
the tasks in a timely manner through efficient utilization of
SOUCS.

BACKGROUND

0003. In general, production workflows in computer
based applications such as data processing, Supply chain
management, data publishing systems, etc. comprise a set of
jobs to be executed among computational nodes or to deliver
information on multiple client systems. Each job may in turn
require one or more tasks to be executed on the computational
nodes. The workflow typically starts with the receipt of a task
or a job from a sender application to a receiver application.
The receiver application acknowledges the receipt of the task
and after completion of the job communicates the exit status
to the sender application. If the exit status indicates a Success,
the sending application schedules one of the Subtasks to
another receiver application running on a different computa
tional node. The final deliverables are generated once all the
tasks in the workflow are completed as per the desired order.
In case the exit status indicates an error, analarm is raised, and
another taskistaken up for processing. In a typical production
scenario a predetermined number of requests in the pipeline
need to be completed within a stipulated timeline. In the
above scenarios, a workflow manager application manages
the tasks by selecting appropriate processing application
based on the parameters in the user request.
0004. A workflow manager implemented through a client
server architecture often possess limitations, such as tight
coupling among software components. In addition, such a
configuration may lead to inefficient utilization of resources
as client applications need to wait for the server process to
provide the data.
0005. The implementation of product generation work
flows using asynchronous communication, with non-persis
tent messaging, would pose serious problems due to a
receiver application, running over a node connected to the
sender application through the network, may go on or offin
random order. This in turn would affect the delivery of the
messages, and may lead to failures. If an exit status is not
available, the workflow cannot proceed further, leading to
non-fulfillment of the user request. Also, the computational
resources in the distributed environment may not be fully
exploited just by employing message based asynchronous
methods of communication between workflow manager and
the processing application. If large number of products are in
the pipeline, this would result in an exponential increase in the
number of workflows pending for completed. Further, this

Mar. 5, 2015

would lead to unpredictable product delivery timelines if
appropriate steps were not taken in managing the workflows.
Moreover, this may lead to suboptimal utilization of
resources, as some of the products may never get a chance to
execute, and would lead to unacceptable long delays in pro
viding deliverables to users.

BRIEF SUMMARY

0006. In accordance with certain embodiments disclosed
herein, methods and systems are disclosed for optimizing
processing and management of dynamic production work
flows utilizing asynchronous persistent message driven com
munication between the processing applications and the
workflow manager.
0007 To further optimize the workflows, certain embodi
ments incorporate methods that would ensure quality of Ser
vice (QOS) from the processing systems in terms of improved
turnaround time (TAT) and optimizing the throughput from
the systems. In other embodiment, techniques are disclosed
for managing and monitoring the dynamic production work
flows.
0008. In certain exemplary embodiments, techniques are
disclosed for managing dynamic production workflows in
distributed Scheduling and transaction processing in a com
puter-based system. Distributed computational node process
ing and routing of the tasks by the workflow manager may be
integrated using a persistent message queuing system to pro
vide asynchronous communication between the applications.
0009. In product generation workflows, a first application
may send a communication to a second application for pro
cessing the requests pertaining to the users. The second appli
cation inserts the request into a database leading to a tuple
level change that triggers a stored procedure, to generate a
message. The message may be appended to the in-queue of
the message queue (MQ) pertaining to the third application. A
third application acknowledges the receipt of the messages
and prepares the workflows for each of these products. If an
acknowledgment is not received from the receiving applica
tion, then the message is again retried for a specific number of
attempts. Based on the tasks in the workflow the third appli
cation looks into the local resource manager and generates a
message that is appended into the MQ of a fourth application.
The fourth application, which may reside on a node, sends an
acknowledgment of the message and schedules a list of Sub
tasks to be performed on the node. The workflow preferably
comes to a halt only when the exit status of any of the appli
cation is either false, or all the tasks are completed without an
exit status being false. The product in the pipeline is assumed
to be successfully completed if all the tasks in the workflow
are completed and they are ready to be delivered to the user.
0010. In addition, message queues may be managed Such
that the priority is periodically updated automatically by an
auto prioritize application so that all the workflows receive
the required computational resources and are completed as
per specified timelines.
0011. On availability of one or more computational nodes,
a load balancer application may automatically scale the per
formance of the workflow system by optimizing the distrib
uting of load among the nodes based on weights obtained
from the parameters such as resources on the node, resource
requirement of the tasks and the type of processing required
for generation of the product.
0012. A dispatch engine may receive a message from an
application after it completes the required processing on a

US 2015/OO67028A1

computation node. On receipt of the message, the dispatch
engine consults a knowledge base for generating a message to
the next application based on the rules set for the job.
0013 A reporting engine, issue tracker and an analytical
engine may complement the workflow by providing means
for monitoring, tracking and assessing the production envi
rOnment.

0014. An auto prioritize engine may build a model from
the past data on the production environment to prioritize the
requests currently pending in the workflow. The engine may
first identify products waiting for allocation of resources, and
Subsequently build a model based on the parameters such as
time spent in the workflow, probable time of completion etc.,
to prioritize the queues so that the delivery timelines meet the
user requirement.

BRIEF DESCRIPTION OF THE DRAWINGS

0015 The present invention is illustrated by way of
example and not limitation in the figures of the accompanying
drawings, in which like references indicate similar elements
and in which:
0016 FIG. 1 is an exemplary system configuration for
implementing the invention;
0017 FIG. 2 is an exemplary architectural diagram of a
message driven dynamic production workflows in a distrib
uted environment;
0018 FIG. 3 is a block diagram showing the perspective
view of a system that is built to manage the production work
flows in a remote sensing data processing environment under
one exemplary embodiment;
0019 FIG. 4 is an exemplary flow chart depicting a dis
patcher engine that accepts the messages and after consulting
the rule base generates messages for other applications;
0020 FIG. 5 is an exemplary flow chart illustrating a glo

ball optimization procedure adopted for incrementing the pri
ority of the messages by the auto prioritize engine;
0021 FIG. 6 is an exemplary flow chart illustrating a local
optimization procedure involved in increasing the priority of
the messages by the auto prioritize engine;
0022 FIG. 7 is an exemplary flow chart depicting the
rescheduling of jobs by the load balancer in the event of fault
in any of the nodes;
0023 FIG. 8 is a block diagram showing the functioning
of load balancing under another exemplary embodiment; and
0024 FIG. 9 is an exemplary flow chart of the events
depicting the distribution of jobs by the load balancer among
computational nodes.

DETAILED DESCRIPTION

0025. The following discussion is aimed at disclosing
architectural elements and providing a concise general
description of the computing infrastructure in which the vari
ous embodiments may be implemented.
0026 Real world problems are generally solved by divide
and conquer strategies, i.e., each problem independently can
be divided into sub problems and subsequently into tasks that
can be executed on any computing infrastructure. The more
experienced and skilled in the present art will appreciate the
fact that the embodiments disclosed herein can be practiced
not only on networked personal computers but also on mul
tiprocessor/multicore machines, mainframe computers, hand
held devices and the like. One may can even practice the
invention in a distributed processing environment where in

Mar. 5, 2015

the real processing is done by applications running on a
system connected through a network. The data and the pro
grams required for processing may be located on the local
computer or on the remote system. In a data centric approach,
the processing applications may access the data from a cen
tralized storage infrastructure Such as storage area network
and utilize the remote computing infrastructure to accomplish
a task.
0027. With reference to FIG. 1, an exemplary system com
prises a computing infrastructure consisting of a general pur
pose computer with a multiprocessor/multi core unit (10), a
system memory unit (11), a bus infrastructure (12) commu
nicatively coupled to the processor, memory and other
peripheral devices. System memory may comprise of a read
only memory containing the basic input output system rou
tines that are required to initialize the computer during the
boot up process. The computer may further include a hard
disk drive (13), magnetic devices (14) and optical devices
(15) connected to the system bus through an adapter1 (32),
tape drive interface (36), optical drive interface (22) respec
tively. Further, the system may be coupled to a centralized
storage (16) through adapter2 (17) for accessing large data
Volumes of data by application running on remote compute
nodes. Operating system kernel (33) and the application soft
ware modules (34) may reside in the read and write memory
as long as the power is Switched on. A database and the
messaging middle ware may reside in the main memory of the
exemplary system.
0028. Users can access the system through input devices
such as keyboard (18), and mouse (19). In general these input
devices are connected to the processing unit through a serial
port interface (38) via the system bus, but in addition they may
also be connected through a universal serial bus (USB) (21) or
optical interfaces (22). An external hard disk (37) may be
connected through an interface to the system bus. Output
devices such as video monitors (23) may be connected to the
system bus through video adapters (35) via the system bus. In
addition, the multimedia kit Such as speaker (25) and micro
phone (26) are connected to the system through an adapter
(36) to the processing unit via the system bus. A printer (18)
may be configured through a parallel port interface (24) for
taking hard copy outputs from the system.
0029. The system may interact with other remote comput
ers over a network environment through a network Switch
(29) via a network interface adapter (28) for connecting to the
systems on the network. The communication between the
processing nodes (30) may be implemented through network
protocols. Applications residing on the processing nodes may
in turn utilize a group of systems (31) for executing the tasks.
It should be appreciated that the system shown in the FIG. 1
is exemplary and other forms of connectivity are possible
among the systems.
0030. In one exemplary embodiment, a workflow manage
ment system is disclosed in a network environment compris
ing message driven communication through queuing mecha
nism for receiving and transmitting the messages both from/
to different applications. Messages may be generated by
sensing a tuple level change in the database and transmitting
the required information to the applications. A message may
contain information specific to the application and is prefer
ably added to a preconfigured message queue. Each message
payload may contain data in the form of an object (business
object) or it may include only control information for point
ing to the data stored in the centralized repository. A typical

US 2015/OO67028A1

application may comprise a Software agent for sending and
receiving messages and an interface module to invoke the
processing modules required to accomplish the tasks by
accessing data from centralized storage. The messages are
made persistent by storing them in a database or in a file until
a confirmation is received from respective applications.
0031 Archiving the messages in a persistent storage
before transmission in asynchronous mode ensures the deliv
ery of the message payload even if the application is not in
service at a certain point of time. The sending and receiving
application may be on the same machine or on different
machines connected by a network. Although a point to point
communication is shown, those skilled in the art would appre
ciate that messages published by the workflow manager can
be sent to all those applications who have subscribed to cer
tain specific messages. Also, those skilled in the art should
appreciate that messages can be delivered through a secured
channel over a network. Further, one can extend the present
embodiment to distribute the jobs to a remote workflow man
ager by routing the messages through a server. The remote
workflow manager may in turn schedule jobs to applications
on a different network of computer systems. The rerouting of
jobs may be accomplished by incorporating appropriate pro
cessing rules to harness the distributed computational
SOUCS.

0032 FIG. 2 illustrates an exemplary environment for run
ning a message driven workflow management application. In
accordance with one embodiment, complex workflows may
be synthesized and executed in an optimal manner by inte
grating different components of workflows through asyn
chronous message delivery as a communication mechanism
between the processing applications. Workflow manager (60)
may comprise a dispatcher (111), load balancer (104), and
auto prioritize engine (113). The workflow manager may
initiate a change in the database tuple (35) through a database
manager (61) on receipt of an external message (62) in the
form of a user request. A trigger (37) may be generated on
change of the database tuple further initiating a stored proce
dure (36) that creates a message (63) on a messaging middle
ware (40) and appends it to the persistent queue (41) of the
respective application that is Supposed to receive the message
as per the rules stored in the knowledge base (KB) (103).
0033 Each message preferably contains an identification
number, time, status, priority (38) and/or a payload (39). An
instance of the business object may be appended to the mes
sage by the workflow manager for delivering to the applica
tions. In addition one can append even an extensible markup
language (XML) file as message payload. The message is
received by a software agent (65) which in turn invokes the
processing modules of the application. The software agent is
implemented as a daemon process. As soon as the message is
en-queued, the agent listening to the queue would receive the
message if the application (45) is configured in point to point
mode. If the agent is not available at the time of receiving the
message, the status would be retained as undelivered. When
the agent comes online, it checks the availability of the mes
sages through a queue look up service (64). The agent
acknowledges (47) receipt of the messages and the status in
the middleware is updated as received. If an acknowledgment
is received from the agent for the message, the status is
updated as delivered on the contrary if an acknowledgement
is not received from the agent, the same message would be
sent again (retransmitted) after a certain time gap. If the
number of retries exceeds a predetermined value, the mes

Mar. 5, 2015

sages are assigned to an exception queue (65). The messages
in the exception queue are automatically shown on to a issue
tracker (114) user interface. Messages is recovered from the
exception queue to the main queue once the error is resolved
and updated using issue tracker (114) interface. Under
another embodiment, only the location of the data is sent to
the applications (45) along with the message wherein on its
receipt it may initiate processing of jobs utilizing a group of
(31) compute nodes by accessing the data from a centralized
(16) storage. Some of the applications (44) may even store the
message payload in a local database for Subsequent process
ing or onward transmission.
0034. One can even deliver the same message to multiple
recipient applications (44) in a Subscription mode under one
embodiment. Also, the messages can be delivered in secured
mode of transmission by incorporating required agents using
services such as SSL and HTTPS for communication
between the applications (46).
0035. In case a database table is accessed by the process
ing application, the end application acknowledges the receipt
of the message by updating the status of the tuple in the table.
The processing applications, after completing the job, would
insert a message into the queue through an agent or updating
the status in the database.
0036. The dispatcher engine of the workflow manager on
receipt of the messages applies the business rules to route the
request to other applications. User requests may be routed to
the applications until all the required processing is completed.
0037 We now focus on FIG. 3 wherein a typical example
of workflows in remote sensing data product generation is
depicted under one embodiment. Here, the end product is a
function of different processing functions done by software
modules distributed across many computing resources. The
workflow manager coordinates and automates these tasks
through message driven interfaces. The users (114) raise a
request for remote sensing data through an interface. The user
is kept aware of the approximate delivery timelines (115) for
completion of the request based on the computations taking
into account the current load and performance of the comput
ing infrastructure. On receipt of the request, an ingest engine
(101) looks into the order details and updates in the transac
tion database (102). As soon as the tuple is inserted a stored
procedure (36) inserts a message into a queue hosted inside a
message oriented middleware (40) which is de-queued by the
load balancer (104) and distributes the jobs among the com
puting nodes by inserting into the In queue (106) of the
processing application after due consultation with a knowl
edge base (KB) (103). A typical workflow may comprise of
data processing (108), value addition (109), and quality
checking (110). Each of the processing applications after
completing the assigned task inserts a message in the out
queue (107). The dispatcher engine (111) de-queues the mes
sages received after the update from the processing applica
tions and delivers it to the Subsequent application by updating
the transaction database (102) based on its interpretation of
the rules in the KB (103). An exemplary XML of the KB that
is used for routing the messages is as follows:

<?xml version=“1.0 encoding=“utf-82>
<xs:schema attributeFormDefault="unqualified elementFormDefault=

“qualified Xmlins:Xs="http://www.w3.org/2001/XMLSchema's
<xs:element name="route''>

<XS:complexTypes <XS:Sequences <XS:element maxOccurs=

US 2015/OO67028A1

-continued

“unbounded name="rule
<xs:complexTypes <xs:attribute name="routetag type=

“xs:string use="required f> <XS:attribute name=
“sourceapp' type="xs:string
use="required f> <xs: attribute name="destinapp' type=
“xs:string
use="required f> <xs: attribute name="sequence” type=
“xs:unsignedshort
use="required f>

</xs:complexTypes <xs:element> <xs:sequence <xs:complexTypes
<xs:element

<xs:schema

0038. The throughputs of different applications are mea
sured and the timelines of delivery of products are updated in
the KB. The products which require attention are monitored
and resolved through an issue tracker (117). The updated
timelines (118) are propagated back to the user to keep him
abreast of the current situation.
0039 Turning now to FIG. 5, a global optimization pro
cedure is depicted wherein the user jobs are prioritized based
on the nominal timelines spent by similar type of jobs in the
workflow.
I0040. Fork" job denoted by (J) in the workflow waiting
for an assignment to a processing application a method to
check whether the Job is running as per schedule. If a devia
tion is found a preventive measure is to prioritize the Job. Let
T. represent the total time spent by the J in the workflow,
T. be the time taken by the i' application to complete the sub
task of the Job and T, is the waiting time of the J. at the n”
processing application. We compute (603) the total time spent
by Jas

2-1 (1)

Tuoba (J) =XT (Je)+T, (J).
i=1

0041. In Step 604, a method for computing the nominal
timelines of generation pertaining to jobs already processed
in the workflow is presented. Let T. represent the nominal
time line, h is the total number of instances of a similar job
order in the history, n is the total number of processing appli
cations required for the k"Job J. and T, is the time taken by
the p" instance of a similar job order at q" application is
computed as an average of Sum of the time taken by similar
job orders by different application in the previous time steps.
The T. for k" Job J. is computed as

p 1 (2)

Toba () = (in 2. 2. Tp(dk)

I0042. A simple comparison in Step 605 of T, and
T. leads to Step 606. Let AT, denote difference in
timelines between the present Job and the nominal time taken
for delivery of similar Job. One can compute AT, as

ATglobai(-)-T.globall,-)-Tglobal (J.). (3)

I0043. The quantity ATP0 is an indication that the user
request is being delayed and a preventive action needs to be
initiated. Accordingly, an aspect current invention the new
priority of the job order J is recomputed in Step 606 as

Mar. 5, 2015

P(J)=P(J)+LPCF(P.J.).AT(J.) (4)

where P,(J) and P are the updated global priority and
initial priority of the job order respectively. The LPCF in
Equation 4 represents a linearpiecewise polynomial function.
Those skilled in the art would appreciate that other forms of
curve fitting methods such as spline, rational polynomial
function etc., may be adopted to fine tune the relationship
between P and AT.
0044. In FIG. 6 a procedure for modelling the local varia
tions in job completion pertaining to a particular application
is presented. Let A denote a processing application corre
sponding to pending Job J. The Step 703 needs to be com
pleted as a part of workflow W. The waiting time T(A) of
the job order for the application A is computed in Step 705 as
the difference between the current time T(A.J.) and the
time at which the job order J was received at the processing
queue A,

0045. In Step 706, the nominal time of generation T.
for similar type of job order (J) in the application queue of A,
is computed from workflow history as an average time taken
by similar job by the processing application A

1 (6)
Tai (A. J.) = i *XT (A. J.),

i=1

where h is the total number of instances of similar job order
processed earlier by the application A, and T.(AJ) is the
time taken by the i' instance of a similar job order J, by the
processing application A
0046. A comparison of T(A.J.) and T(AJ)' is
shown in Step 707. The difference in between T(AJ)
and T(A.J.) represented as AT is a measure of local
variations in completing the Job of type J by the application
A computed in Step 708 as

ATieca?A, J.) Tecat(4,-,-)-Ticcai (A.J.). (7)

0047 Based on the AT (A.J.) one can prioritize the
user request Step 709 as

where P, and P are the updated local priority and initial
priority of the job order respectively. The function LPCF
represents a linear piecewise model.
0048 Turning to FIG. 8, a load balancer (104) performs
the task of optimizing the distribution of jobs among various
processing nodes of same processing application. It distrib
utes in Such a way that every job is assigned to that node
where it has the best chances of getting processed earlier
considering various parameters such as maximum size of the
queue, current processing load, number of Scheduled and
unscheduled job and the job type. The parameters are stored
in the KB (103) and retrieved by the load balancer while
assigning the jobs to processing applications (204).
0049. A transaction in a database (102) may act as a trigger
for invocation of load balancer. A trigger initiates a message
as soon as the transaction database is updated and the stored
procedure adds the messages to the message queue of the load
balancer application. On completion of the job the application
updates the status as (Success/failure) in the database leading
to a message generation for the Job Dispatcher (111). The

US 2015/OO67028A1

dispatcher consults the KB for updating the job to the next
application. If an incoming job is of higher priority, then a
need may arise for the load balancer to preempt some of the
existing jobs (which are not under process) if the queue is
already full. In case of node failure, the automatic node moni
toring software generates a message to update the status of the
node in the KB. An update of the tuple in the KB a message is
generated for the load balancer. On receipt of the message, the
load balancer fetches back all the jobs pending at that pro
cessing node and redistributes it among other available com
pute nodes. If the node again becomes available, it redistrib
utes the work orders to attain equilibrium of load.
0050. The jobs are in general comprise of both normal and
emergency types. Referring to FIG. 9, a load distribution
flowchart, on receipt of the job order (301), Load balancer
checks the processing application of job (302). Those skilled
in the art would appreciate that certain applications may have
a further categorization of application Sub types. In a typical
case of remote sensing product generation, the application
Sub types are data processing (302) would of the type optical,
microwave or non-imaging. For these cases the load balancer
checks the Subtypes and based on processing application and
Subtype (if present), it finds all the Suitable computing nodes
along with the parameters in KB for taking a decision (304).
Further, it finds out whether the job is a high priority job or
normal job (305). In case of normal job, the load balancer
finds the best candidate by considering capacity and current
load of each of the nodes (306). If a single such node is found
(307), it assigns the job to that node (309) else, it performs a
time resolution using the other parameters. For a high priority
job, it finds the best possible node which has less number of
high priority products (310) since those are the only ones in
competition with this job. If more than one such node is
available (311), it performs time resolution using other
parameters such as delivery timelines committed to the user.
If the selected node is already full (313), then instead of
making the job wait, it preempts unscheduled jobs from that
node (314) and puts them back into the staging area (205) and
assigns the incoming job to that node (309).
0051 Turning to FIG. 7, the drawing illustrates an exem
plary flow chart for the sequence of events in case of node
failure/recovery. In this embodiment, whenever a status
change message is received (401) from the node, the load
balancer checks whether the node has failed or recovered
from a failure (402) based on status in the message payload.
If the status of the job is updated as failed all the jobs assigned
to that node (403) is rolled back to the staging area (205).
Further, the load balancer may be configured to redistribute
these jobs among other available compute nodes (405). In
case of node recovery from a failure, all the jobs are fetched
from the staging area and assigned back to the node (406). In
addition, the node may now be considered a candidate, and
further redistribution from other available nodes (407) may
be done to attain an optimal level of resource utilization (408).
0052 FIG. 4 illustrates an exemplary flow chart of a typi
cal Job Dispatcher under another embodiment. On receipt of
the Job completion status message (either Success or failure)
(501) the Job Dispatcher is invoked. In this embodiment, the
dispatcher first fetches the details of all finished jobs corre
sponding to the available computing node (502), and Vali
dates the grouping constraints if any and groups the jobs as
per configurable grouping parameters (503). For each job in
the group, it preferably checks consistency constraints (504)
and inserts a record into the history database (505). The

Mar. 5, 2015

dispatcher checks the status of the Job (506) and obtains the
route tag for the job from the KB (507) in case the status flag
is a success. The dispatcher implements a lookup service to
obtain the next processing application (508) from KB using
the route tag and current processing application. It then
updates the counter of the next processing application (509).
It accordingly moves the job to the staging area of the Subse
quent processing application (513). Moreover, if status flag
shows a failure, then it finds next processing centre using
reason tag and current processing application and moves it to
the staging area of the corresponding processing application
after consulting the KB (510). An exemplary representation
of the KB for handling rejections is shown below in XML
representation.

<?xml version=“1.0 encoding=“utf-82>
<xs:schema attributeFormDefault="unqualified elementFormDefault=

“qualified Xmlins:Xs="http://www.w3.org/2001/XMLSchema's
<xs:element name= “route''>
<XS:complexTypes <XS:Sequence> <XS:element maxOccurs=
“unbounded name="route''>

<xs:complexTypes <xs:attribute name="sourceapp' type=
“xs:string se="required f> <xs:attribute name=
"destapp' type=''xs:string
use="required f> <XS:attribute name="reason' type=
“xs:string
use="required f>

<xs:complexTypes <ixs:element> <xs:sequence <xs:complexTypes
<xs:element

<xs:schema

If the source application rejects the request with a specific
reason, the dispatcher routes the request to the appropriate
destination application.
0053. The dispatcher may then check if a counter for next
processing center exceeds predefined limit (511). If yes, then
it means it has exceeded its limit for that processing centre
and thus is problematic case and to avoid infinite looping, it is
to be sent to an issue tracker for manual analysis. Therefore,
a message is generated for resolving the issue in processing
the Job at the issue tracker application (512). It accordingly
updates metadata for job to indicate updated processing cen
tre (513). The job is then removed from the compute node out
queue (514). It may also check whether all jobs in a queue are
finished (515). In case of Job(s) that are pending for dispatch
a loop continues till all the jobs in the group are dispatched as
a single unit.
0054 The estimated time (115) is computed based on the
historical information on the timelines taken by the process
ing application to complete a similar type of Job. The data
base table also contains the standard deviations along with the
average time taken for Job completion. When the ingest
engine (101) makes an entry of the request into the database
the estimated timelines are computed as

and then transmitted back to the user. The variable T(P)
represent the time taken for the product P at workcenter i
denoted by wi
0055 As per the preferred embodiment the delivery time
line (117) of the product will be maintained in the transaction
database (102) corresponding to the user request. The deliv

US 2015/OO67028A1

ery time line (117) are recomputed whenever a product takes
a hop from one processing application (44) to another
depending upon the actual time taken by application to gen
erate the product. Let TO denote the outgoing time of the
product and TIbe the time at which the product is assigned for
processing. For each product p the delivery time may be
computed as

(10)

where airepresents the i' application involved in the work
flow, in denotes the total number of processing application
required to be invoked for completing the workflow and ksn
denotes the number of applications that have completed the
process.
0056. In view of the above detailed description, it can be
appreciated that the invention provides a method and system
for driving a workflow through a message driven communi
cation with persistence in the dynamic production environ
ment. The operations involved in the workflow are coordi
nated by sending and receiving an acknowledgment from the
processing applications. The orchestration of workflows
keeping in view the performance of different component is
disclosed. A reliable distribution of messages and workload
optimization leads to effective utilization of resources. The
disclosed methods would help the business to obtain cus
tomer satisfaction by paving a way for dynamic customer
relationship management.
0057 The Abstract of the Disclosure is provided to com
ply with 37 C.F.R. S1.72(b), requiring an abstract that will
allow the reader to quickly ascertain the nature of the techni
cal disclosure. It is submitted with the understanding that it
will not be used to interpret or limit the scope or meaning of
the claims. In addition, in the foregoing Detailed Description,
it can be seen that various features are grouped together in a
single embodiment for streamlining the disclosure. This
method of disclosure is not to be interpreted as reflecting an
intention that the claimed embodiments require more features
than are expressly recited in each claim. Rather, as the fol
lowing claims reflect, inventive subject matter lies in less than
all features of a single disclosed embodiment. Thus, the fol
lowing claims are hereby incorporated into the Detailed
Description, with each claim standing on its own as a separate
embodiment.

What is claimed:
1. A network-based method of controlling a production

workflow in a node-based network utilizing message-driven,
persistent, asynchronous communication, comprising the
steps of:

receiving a task request pursuant to the workflow;
providing a tuple for the task request and invoking a stored

procedure in response to the task request, wherein the
stored procedure comprises generating and transmitting
an application-specific message relating to the requested
task, and wherein the tuple is associated with the appli
cation-specific message;

determining if an acknowledgement has been received to
the application-specific message;

providing a message status based on the determinationifan
acknowledgement has been received;

Mar. 5, 2015

obtaining a rule for the task request from a knowledge base
and moving the tuple to a staging area based on the rule:

determining a network condition, and moving the tuple to
an application-specific queue if it is determined that a
predetermined network condition exists;

updating the tuple in the application-specific queue based
on at least one of a status message and priority message
received.

2. The network-based method of claim 1, wherein:
the step of and invoking a stored procedure is performed by

an ingest engine;
the step of determining if an acknowledgement has been

received is performed by a dispatcher engine;
the step of determining a network condition and resource

availability is performed by a load balancer; and
the step of moving the tuple to an application-specific

queue is performed by a dispatcher engine on update of
tuple by the processing application;

3. The network-based method of claim 1, further compris
ing the step of moving the application-specific message to an
exception queue if an acknowledgement has not been
received after a predetermined number of attempts defined in
the KB.

4. The network-based method of claim 1, wherein the rule
is configured in the knowledge base to map an input tag
related to the task request to a route tag to the staging area.

5. The network-based method of claim 1, wherein the
network condition comprises states of processing applica
tions in the network, said method further comprising the steps
of:

resolving ties during distribution among nodes in the net
work based on a current state of processing applications
relating to the task request;

receiving parameters relating to network conditions;
obtaining a distribution rule for routing distribution based

on the parameters; and
assigning one or more priorities to task requests based on

the distribution rule.

6. The network-based method of claim 5, further compris
ing the steps of

receiving a node message relating to a status of a node; and
modifying the distribution rule such that the tuple is moved

from the application-specific queue to a secondary
queue based on the node message.

7. The network-based method of claim 5, wherein the step
of resolving ties during distribution comprises the step of
calculating estimates using the distribution pattern among
nodes.

8. The network-based method of claim 1, further compris
ing the step of storing at least Some of the steps of the pro
duction workflow for future processing.

9. A computer program product, comprising a tangible
computer usable medium having a computer readable pro
gram code embodied therein, said computer readable pro
gram code adapted to be executed to implement a method for
controlling a production workflow in a node-based network
utilizing message-driven, persistent, asynchronous commu
nication, said method comprising the steps of:

receiving a task request pursuant to the workflow:
providing a tuple for the task request and invoking a stored

procedure in response to the task request, wherein the
stored procedure comprises generating and transmitting

US 2015/OO67028A1

an application-specific message relating to the requested
task, and wherein the tuple is associated with the appli
cation-specific message;

determining if an acknowledgement has been received to
the application-specific message;

providing a message status based on the determinationifan
acknowledgement has been received;

obtaining a rule for the task request from a knowledge base
and moving the tuple to a staging area based on the rule:

determining a network condition, and moving the tuple to
an application-specific queue if it is determined that a
predetermined network condition exists;

updating the tuple in the application-specific queue based
on at least one of a status message and priority message
received.

10. The computer program product of claim 9, wherein:
the step of and invoking a stored procedure is performed by

an ingest engine;
the step of determining if an acknowledgement has been

received is performed by a dispatcher engine;
the step of determining a network condition is performed
by a load balancer, and

the step of moving the tuple to an application-specific
queue is performed by dispatch engine on update of
tuples by the processing application.

11. The computer program product of claim 9, further
comprising the step of moving the application-specific mes
sage to an exception queue if an acknowledgement has not
been received after a predetermined number of attempts
defined by the stored procedure.

12. The computer program product of claim 9, wherein the
rule is configured in the knowledge base to map an input tag
related to the task request to a route tag to the staging area.

13. The computer program product of claim 9, wherein the
network condition comprises states of processing applica
tions in the network, said method further comprising the steps
of:

Mar. 5, 2015

resolving times of distribution among nodes in the network
based on a current state of processing applications relat
ing to the task request;

receiving parameters relating to network conditions;
obtaining a distribution rule for routing distribution based

on the parameters; and
assigning one or more priorities to task requests based on

the distribution rule.
14. The computer program product of claim 13, further

comprising the steps of
receiving a node message relating to a status of a node; and
modifying the distribution rule such that the tuple is moved

from the application-specific queue to a secondary
queue based on the node message.

15. The computer program product of claim 13, wherein
the step of resolving times of distribution comprises the step
of calculating estimates for distribution among nodes.

16. The computer program product of claim 9, further
comprising the step of storing at least Some of the steps of the
production workflow for future processing.

17. A network-based method for processing workflows in a
distributed environment for improving data distribution to a
user, using an automatic prioritization engine comprising the
steps of:

computing application-specific throughputs for each appli
cation associated with a respective type of job in the
workflows:

storing the application-specific throughputs for each type
of job in a knowledge base;

calculating at least one of a nominal and average delivery
timeline for specific job types based on metadata relat
ing to the workflow stored in the knowledge base;

computing the time spent taken for completion of job by at
least one of (i) a particular application and (ii) by all
applications involved in the workflow; and

incrementing a priority if the elapsed time is greater than
the nominal time by fitting a piecewise linear function.

k k k k k

